С помощью разрядных приборов, например счетчиков гейгера (G01T1/18)
G01T1/18 С помощью разрядных приборов, например счетчиков гейгера (разрядные приборы H01J47)(152)

Изобретение относится к устройствам для детектирования ионизирующих излучений (ИИ). Проволочный газонаполненный электронный умножитель высокого пространственного разрешения содержит идентичные проволочный катод и проволочный анод, проволочки которых натянуты с равномерным шагом, при этом проволочки анода размещены ортогонально проволочкам катода, считывание Х-координаты производится с катода, а Y-координаты - с анода, при этом шаг s и диаметр d проволочек связаны соотношением s≈πd.

Способ изготовления счетчика ионизирующих излучений относится к детекторам для регистрации ионизирующих излучений, в частности к газоразрядным самогасящимся счетчикам Гейгера-Мюллера, которые используются при регистрации преимущественно бета- и гамма-излучений.

Изобретение относится к камере деления для регистрации нейтронов в широком энергетическом диапазоне (от тепловых до быстрых). Камера выполнена на основе системы коммутируемых трубчатых электродов с нанесенными ураноксидными покрытиями (радиаторами), коаксиально расположенными в металлическом корпусе, заполненном рабочим газом.

Изобретение относится к области измерения ионизирующих излучений. Способ управления цепью питания газоразрядного счетчика Гейгера-Мюллера осуществляется с помощью электронного ключа и формирователя при больших мощностях доз излучений, характеризуется формированием регистрирующего импульса газоразрядного счетчика Гейгера-Мюллера во время появления внутри счетчика Гейгера-Мюллера нарастающего тока разряда – «электронной лавины», создающегося при попадании ионизирующего излучения на счетчик Гейгера-Мюллера, формирователь на начальном этапе возникновения «электронной лавины» отключает счетчик Гейгера-Мюллера от цепи питания с помощью электронного ключа и формирует счетный импульс для дальнейшей обработки, при этом электронная схема переходит в исходное состояние, а «электронная лавина» прекращается на начальной стадии ее развития.

Изобретение относится к области радиационного контроля и обеспечения радиационной безопасности объектов использования атомной энергии и может применяться для обнаружения области протечки радионуклидов и оценки ее величины при эксплуатации водо-водяных ядерных реакторов.

Изобретение относится к экспериментальной физике, а именно к газовым смесям проволочных газоразрядных камер - детекторам заряженных частиц. Проволочные газоразрядные камеры - детекторы заряженных частиц, используются, практически, во всех экспериментальных установках современной ядерной физики, физики высоких энергий и медицинской физики.

Изобретение относится к области технической физики, а именно к области детекторов для регистрации тепловых нейтронов. Сущность изобретения заключается в том, что газонаполненный детектор для измерения малоуглового рассеяния тепловых нейтронов содержит катоды, выполненные в виде системы заземленных концентрических колец разного диаметра, при этом каждое кольцо выполнено из гибкого упругого материала, внешняя и внутренняя стороны каждого кольца покрыты металлизированным слоем; внутренний слой кольца разделен электроизоляционными слоями на сектора, которые исполняют роль отдельных катодов, взаимно ориентированных на геометрический центр детектора; заземление исполнено через внешний слой кольца, который служит дополнительным катодом; для держателя анодных нитей в зоне электроизоляционного слоя каждого кольца выполнены отверстия; каждый анод и каждый секторальный катод индивидуально подключены к аналоговой электронике, образуя двухкоординатные детекторы; аналоговая электроника расположена внутри объема корпуса.

Изобретение относится к измерительной техники, а именно к используемому в бесконтактных радиоизотопных толщиномерах листового проката блоку детектирования ионизирующего излучения. Блок детектирования ионизирующего излучения выполнен с возможностью подключения к программируемому логическому контролеру для автоматического регулирования коэффициента усиления измерительного напряжения и включает в себя ионизационную камеру с высоковольтным блоком питания и усилитель.

Изобретение относится к области исследования механических свойств оболочек материала строу трубок и прогнозированию срока службы строу в составе координатных детекторов частиц на их основе. Устройство решает задачу высокоточного измерения характеристик строу: области упругой и пластической деформации, модуля упругости, коэффициента Пуассона, времени релаксации натяжения материала трубок, влияющий на срок службы строу в эксперименте.

Изобретение относится к области космической техники, предназначенной, в частности, для регистрации микрометеороидов и заряженных частиц ионосферы. Сущность изобретения заключается в том, что устройство контроля герметичности элементов конструкции космического аппарата дополнительно содержит устройства ионизации потока газовых частиц, снабженные устройством двухкоординатного перемещения, установленным с возможностью формирования потока ионизирующих частиц в заданном направлении, при этом в состав разработанного устройства входит пьезодатчик, который используется в качестве модуля, инициирующего запуск основного цикла алгоритма работы устройства.

Изобретение относится к радиационной безопасности и может быть применено для распределенного контроля уровней ионизирующего излучения. Многоканальный дистанционный дозиметр содержит датчики на основе счетчиков Гейгера-Мюллера, модуль питания, микроконтроллер, каждый датчик снабжен согласующим трансформатором, первичная обмотка которого последовательно соединена со счетчиком Гейгера-Мюллера, и подключен к высоковольтному преобразователю, выводы вторичной обмотки посредством двухпроводной линии связи соединены с входами компаратора, выход которого соединен с входом Т-триггера, выход которого соединен с одним из входов микроконтроллера, при этом коэффициент трансформации выбран таким, чтобы обеспечить согласование высокого внутреннего сопротивления счетчика Гейгера-Мюллера с низким волновым сопротивлением линии связи.

Изобретение относится к области радиационного контроля окружающей среды. Узел радиационного обнаружения содержит ионизационную камеру для обнаружения излучения.

Изобретение относится к ускорительной технике и может быть использовано в ядерной физике и астрофизике. Монитор для измерения интенсивности пучка заряженных частиц, состоящий из сцинтилляционного счетчика, отличающийся тем, что сигнал с анода фотоумножителя через гальваническую связь поступает на электронную схему, состоящую из операционного усилителя, усиливающего и раздваивающего сигнал, при этом один сигнал посылается на формирователь импульсов, а другой на усилитель, с выхода которого подается на конденсатор, на котором суммируется заряд в течение цикла измерения интенсивности, затем конденсатор разряжается на преобразователь напряжение-частота, цуг импульсов с которого поступает на формирователь импульсов, а затем с формирователей импульсов сигналы поступают на счетчики импульсов.

Изобретение относится в целом к узлам обнаружения излучения, в частности к узлу обнаружения излучения, поддерживаемому по меньшей мере одной опорной конструкцией. Узел радиационного обнаружения содержит ионизационную камеру для обнаружения излучения.

Изобретение относится к ускорительной технике и может быть использовано в ядерной физике и астрофизике. Пучковый монитор для измерения интенсивности пучка частиц и его пространственного распределения представляет набор из сигнальных и высоковольтных электродов, расположенных перпендикулярно падающим частицам, при этом сигнальные электроды с фиксирующими опорными колонками отделены газовым зазором около 100 мкм при атмосферном давлении; между электродами подается напряжение, под влиянием которого электроны ионизации собираются на сигнальном электроде.

Изобретение относится к области обнаружения ионизирующего излучения. Сущность изобретения заключается в том, что детектор излучения содержит по меньшей мере одно оптическое волокно, подходящее для распределенного волоконно-оптического акустического/вибрационного измерения рядом с по меньшей мере первым электродом, разнесенным со вторым электродом, с газом между первым и вторым электродами.
Изобретение относится к области измерения ионизирующих излучений, а именно гамма-излучения с применением газоразрядных счетчиков. Способ измерения высоких уровней мощности дозы гамма-излучения заключается в том, что измерения проводят с применением газоразрядного счетчика, питающегося от источника линейно изменяющегося высокого напряжения, при этом сформированные на счетчике импульсы при регистрации гамма-кванта поступают на пересчетную схему после амплитудной дискриминации, осуществляемой двухуровневой пороговой схемой.
.

Использование: для преобразования воздействия ионизирующего излучения в электрический сигнал. Сущность изобретения заключается в том, что на полированной пластине, вырезанной из слитка сверхчистого кремния n-типа проводимости формируется сенсор, для чего последовательно производятся первая химическая отмывка пластины в растворе поверхностно активных веществ, содержащих комплексоны, формирование слоя окисла кремния термическим окислением в атмосфере сухого кислорода с добавлением хлорсодержащих компонентов, имплантация ионов примеси р-типа проводимости в рабочую сторону пластины и ионов примеси n-типа проводимости в нерабочую сторону пластины при температуре не менее 50°С с энергией имплантации не более 200 кэВ и с дозой имплантации не более 1000 мкКл/см2, повторная химическая отмывка пластины в растворе поверхностно активных веществ, содержащих комплексоны, формирование слоя окисла кремния термическим окислением в атмосфере сухого кислорода с добавлением хлорсодержащих компонентов, повторная имплантация ионов примеси р-типа проводимости в рабочую сторону пластин и ионов примеси n-типа проводимости в нерабочую сторону пластин при температуре не более 25°С с энергией имплантации не более 200 кэВ, нанесение слоя алюминия на обе стороны пластин, формирование омического контакта путем вжигания алюминия и осаждение пассивирующего покрытия на рабочую сторону пластин, а затем проведение двухстадийного постимлантационного отжига.

Изобретение относится к полупроводниковым приборам для преобразования ионизирующего излучения в электрический сигнал. Сущность изобретения заключается в том, что матричный сенсор (чувствительный элемент) ионизирующего излучения представляет собой p-i-n структуру, выполненную по планарной технологии.

Изобретение относится к ускорительной технике и может быть использовано в ядерной физике и астрофизике. Эмиссионный калориметр для измерения энергии частиц представляет собой сандвич из поглотителя и активных элементов, расположенных перпендикулярно падающим частицам, при этом активные элементы состоят из двух электродов, разделенных газовым зазором около 100 мкм при атмосферном давлении, один из электродов подключен к источнику напряжения порядка 50 кВ/см, а другой электрод подключен к блоку амплитудного анализа.

Изобретение относится к полупроводниковым приборам для преобразования ионизирующего излучения в электрический сигнал, измерение которого позволяет определить уровень радиации и набранную дозу гамма-, протонных, электронных и альфа-излучений.

Изобретение относится к космической технике, в частности для регистрации микрометеороидов и заряженных частиц ионосферы. Устройство контроля герметичности элементов конструкции космического аппарата содержит приемник ионов, установленный на расстоянии от контролируемой поверхности космического аппарата, спутниковый модем, устройство формирования сигнала, при этом спутниковый модем, устройство формирования сигналов и приемников ионов заключены в одном защитном корпусе, вход приемника ионов соединен с устройством формирования сигнала, выход которого соединен со входом спутникового модема, соединенного с антенной, фокусирующую сетку, прикрепленную к защитному корпусу, устройство ионизации потока газовых частиц, прикрепленное со стороны фокусирующей сетки к защитному корпусу, в защитном корпусе установлен фотоэлектронный умножитель, а на контролируемой поверхности космического аппарата установлен пьезодатчик, соединенный с помощью усилителя с устройством формирования сигнала, при этом на поверхности космического аппарата установлены измерительные антенны не менее трех штук, которые дополнительно снабжены антенными усилителями, соединенными с устройством формирования сигнала.

Изобретение относится к области экспериментальной физики и может быть использовано в установках физики элементарных частиц и в исследованиях, проводимых ядерно-физическими методами в потоках заряженных частиц или рентгеновского излучения.

Изобретение относится к координатным газонаполненным детекторам излучения и может быть использовано в области экспериментальной физики, для работ в высокоинтенсивных потоках заряженных частиц, а также в геологии, археологии, а также для радиографического контроля и томографических исследований крупномасштабных объектов.

Изобретение относится к способу определения эффективных масс закладок делящегося вещества. .

Изобретение относится к ионизационным многопроволочным координатным детекторам и может быть использовано в экспериментальной ядерной физике для регистрации ядерного излучения. .

Изобретение относится к ускорительной технике и может быть использовано в ядерной физике и астрофизике. .

Изобретение относится к области радиационной экологии и может быть использовано для оперативной радиометрии жидких проб методом аэроионной топометрии, а также дистанционного поиска остатков ядерного топлива, например плутония, загрязняющих поверхности в результате аварий или в ходе производственных процессов.

Изобретение относится к метрологическому обеспечению войсковой дозиметрической аппаратуры. .

Изобретение относится к средствам обнаружения подводных радиоактивных объектов, находящихся на больших площадях дна или погруженных в него. .

Изобретение относится к рентгенотехнике, в частности к рентгеновским приемникам, и предназначено для использования в медицинских рентгеновских установках, томографах, маммографах, а также в промышленных интроскопах с высоким пространственным разрешением.

Изобретение относится к системе обнаженных проводников и может использоваться для облучения упаковочных материалов для целей стерилизации. .

Изобретение относится к области радиохимии и может быть использовано при проведении технологического контроля или научно-исследовательских работ, связанных с изучением кинетики взаимодействия бета-радиоактивных газов.

Изобретение относится к многослойному детектору и способу определения потока электронов. .

Изобретение относится к регистрации нейтронов и гамма-излучений, преимущественно регистрации нейтронов в системах управления и защиты (СУЗ) ядерных реакторов. .

Изобретение относится к ускорительной технике и может применяться в физике высоких энергий, ядерной физике, астрофизике для регистрации заряженных частиц при малых и больших интенсивностях. .

Изобретение относится к координатным газонаполненым детекторам излучения и может быть использовано в области экспериментальной физики, молекулярной биологии, металлофизики для работ в высокоинтенсивных потоках заряженных частиц или рентгеновского излучения.

Изобретение относится к детекторам рентгеновского излучения, основанным на ионизации газов. .

Изобретение относится к измерительной технике и может быть использовано для измерения концентрации аэроионов. .

Изобретение относится к детектирующим элементам, а именно к устройствам, в которых происходит регистрация гамма-квантов с высоким энергетическим разрешением и потоков нейтронов одновременно, за счет взаимодействия гамма-излучения и нейтронов с рабочим веществом детектора, и может быть использовано для оперативного обнаружения и идентификации гамма-нейтронного излучения от различных объектов, применяемых в ядерно-физических исследованиях и атомной энергетике, для технологического контроля при переработке ядерного топлива, для реакторной диагностики, для исследования нефте-газовых скважин, а также для контроля за перемещением гамма-нейтронных источников на таможне и т.д.

Изобретение относится к области распространения электромагнитных волн в средах. .

Изобретение относится к области измерений ядерных излучений с помощью устройств для определения пространственного положения ионизирующего излучения, в частности к газоразрядным позиционно-чувствительным детекторам ионизирующего излучения, обеспечивающим регистрацию координаты места взаимодействия кванта излучения с веществом.