Способ образования нз-центров окраски в алмазе

 

Изобретение относится к квантовой электронике, а именно к способам получения НЗ-центров окраски. Цель изобретения - повышение концентрации НЗ-центров при одновременном снижении концентрации паразитных центров поглощения в полосе люминесценции НЗ. Способ включает облучение алмаза с однородным распределением по объему А-агрегатов и с их концентрацией не менее 1018 см-3 ионизирующим излучением с энергией не менее 1 МэВ и дозой 100-120 част/см2 на каждый А-агрегат. Затем алмаз отжигают в начале инфракрасным излучением с длиной волны 7 - 12 мкм при температуре 700 - 800 К в течение 0,1 - 1 ч, далее в инертной среде при температуре 1200 - 2000 К в течение 0,5 - 2 ч.

Изобретение относится к квантовой электронике. Цель изобретения повышение концентрации НЗ-центров при одновременном снижении концентрации паразитных центров поглощения в полосе люминесценции НЗ-центров. Установлено, что для образования одного НЗ-центра в алмазе с концентрацией азотных дефектов 1018-1020 см-3, необходима доза облучения 100-120 эл/см2 на каждый А-агрегат. Объясняется это тем, что для преобразования всех А-агрегатов в НЗ-центры необходимо не менее 10-12 вакансий на каждый А-дефект. Доза 10 эл/см2 создает в среднем одну вакансию в кубическом сантиметре алмаза. Следовательно, оптимальная доза облучения определяется в зависимости от концентраций А-агрегатов по формуле D kNА, где D доза ионизирующих частиц, част/см2; NA концентрация А-агрегата, част/см3; k доза ионизирующего излучения на один А-агрегат. При отжиге облученных алмазов, содержащих А-агрегаты, ИК-излучением с длиной волны 7 12 мкм при прочих равных условиях образуется более высокая концентрация НЗ-центров. ИК-излучение спектрального диапазона 7-12 мкм избирательно поглощается А-агрегатами, которые создают в ИК-спектре полосу поглощения, лежащую именно в этом интервале (7-12 мкм). Безазотные алмазы в этом спектральном интервале не поглощают. Поэтому разогрев кристаллов происходит от А-агрегатов, которые становятся источниками тепла внутри кристалла. Микрообласти вокруг них разогреваются до более высоких температур, чем остальные участки, что приводит к тому, что температура возрастает при приближении к А-агрегату. Скорость миграции вакансий увеличивается с ростом температуры, поэтому в хаотичном движении вакансий появляется преимущественное направление, а именно направление на А-агрегат, что приводит к повышению вероятности захвата вакансии А-агрегатом и, в конечном итоге, к увеличению концентрации НЗ-центров. Во время температурного дрейфа на пути вакансий встречаются и другие дефекты, которые, получая в свой состав вакансию, образуют паразитные центры. Эти дефекты проявляются в спектре поглощения полосами с линиями электронных переходов на 594, 575, 638 нм и некоторыми другими. Термостабильность НЗ-центров выше, чем паразитных центров, и при выбранном температурном режиме 1200-2000 К происходит интенсивное разрушение последних. Так, паразитные центры (например, центр 594 нм) разрушаются при температурах более 1200 К, а НЗ-центр термостабилен до 2000 К, поэтому такой режим существенно снижает концентрацию паразитных центров при сохранении полезных. Под воздействием температур 1200-2000 К снижается также серое поглощение кристалла, являющееся следствием облучения. П р и м е р. В экспериментах использовали природные плоскогранные октаэдры алмаза. Концентрация азота в них 1019 см-3 была определена по интенсивности поглощения на длине волны 0,306 мкм. Присутствие в алмазе азота в виде А-агрегатов было определено по конфигурации полосы поглощения в области 7-12 мкм. Однородность распределения в алмазе А-агрегатов была установлена по однородному распределению люминесценции. Диагностированные таким образом алмазы облучались в реакторе нейтронами с энергией излучения более 1 МэВ и дозой 1021 част/см2. После облучения кристаллы имели черную окраску, были непрозрачны, нелюминесцировали. Для установления оптимальных температурных режимов отжига ИК-излучением проведен ступенчатый нагрев кристаллов до температуры 900 К с интервалом 50 К. Прогрев проводили в течение 1 мин при каждой температуре. После каждого прогрева записывали спектр поглощения в видимой области. В качестве источника ИК-излучения использовали СО2-лазер с длиной волны 10,6 мкм мощностью 30 Вт. Кристалл размещали на теплоизолирующей подложке, а температуру контролировали термопарой. Таким образом, была получена кривая изохронного отжига, интенсивность которой соответствует концентрации вакансий. На этой кривой наблюдаются два участка снижения концентрации вакансий: низкотемпературный (500-600 К) и высокотемпературный (700-800 К). На низкотемпературном участке снижение концентрации вакансий происходит за счет их заполнения межузельными атомами, которые подвижны при более низких температурах, чем вакансии. На участке 700-800 К происходит миграция самих вакансий, которые захватываются дефектами, в том числе и А-агрегатами, с образованием ряда центров окраски, полезным из которых является только НЗ. Из изохронной кривой следует, что дальнейшее повышение температуры (до 900 К) нецелесообразно, так как не приводит к существенным изменениям в кристалле. Поэтому оптимальными являются температуры 700-800 К. При дозах облучения 1020-1024 част/cм2 и прокалке при температурах 600-700 К оптическая плотность вакансий составляет Do2,5-3. Считая, что "полный" отжиг наступает при снижении оптической плотности до D 0,01 по формуле t ln/, где - постоянная отжига, определили необходимое время t800 0,1 ч, t700 1 ч. Отжиг алмаза в инертной среде проводили в печи для выращивания кристаллов, заполненной аргоном при температурах 1200, 1300 и 1500 К. Эффективность процесса высокотемпературного отжига увеличивается с ростом температуры. Однако нагрев алмаза до температур выше 2000 К приводит к сильному росту испарения с поверхности кристалла. При этих температурах начинается частичная графитизация алмаза, что приводит к ухудшению его качества. При температуре ниже 2000 К отрицательных явлений не происходит. Поэтому верхним температурным пределом выбирали 2000 К. Отжиг в течение 0,5-2 ч в указанном температурном диапазоне достаточен для разрушения большинства паразитных центров. По данным спектра поглощения алмаза была рассчитана концентрация НЗ-центров по коэффициенту поглощения в максимуме полосы НЗ, который составил 198 см-1, что соответствует концентрации НЗ-центров 7,8 1018см-3. При этом коэффициент оптических потерь в полосе люминесценции составил 1 см-1, что существенно превышает аналогические показатели способа-прототипа. Технико-экономическим преимуществом заявляемого технического решения по сравнению с прототипом является повышение концентрации НЗ-центров окраски в алмазе и одновременное снижение концентрации паразитных центров поглощения в полосе люминесценции НЗ-центра за счет обеспечения оптимальных условий для образования высоких концентраций НЗ-центров и для разрушения паразитных центров при сохранении концентрации полезных.

Формула изобретения

СПОСОБ ОБРАЗОВАНИЯ НЗ-ЦЕНТРОВ ОКРАСКИ В АЛМАЗЕ, включающий облучение алмаза с А-агрегатами азота ионизирующим излучением с энергией не менее 1 МэВ, отжиг алмаза в инертной среде, отличающийся тем, что, с целью повышения концентрации НЗ-центров при одновременном снижении концентрации паразитных центров поглощения в полосе люминесценции НЗ-центров, облучают алмаз с однородным распределением по объему А-агрегатов и с их концентрацией не менее 1018 см-3 дозой ионизирующего излучения 100-120 част/см2 на каждый А-агрегат, воздействуют на алмаз в течение 0,1 1 ч и инфракрасным излучением с длиной волны 7 12 мкм, при этом разогревают алмаз до температуры 700 800 К и отжигают алмаз в инертной среде при температуре 1200 2000 К в течение 0,5 2 ч.

MM4A - Досрочное прекращение действия патента СССР или патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Дата прекращения действия патента: 19.07.2008

Извещение опубликовано: 20.07.2010        БИ: 20/2010




 

Похожие патенты:

Изобретение относится к материалам твердотельных лазеров

Изобретение относится к лазерной технике и может быть использовано при разработке новых лазерных материалов
Изобретение относится к области квантовой электроники, к методам получения кристаллических лазерных сред

Изобретение относится к лазерным веществам на основе органических красителей и полимеров и может найти применение в лазерной технике для изготовления активных элементов лазеров на красителях

Изобретение относится к квантовой электронике, а именно к твердотельным лазерным средам на центрах окраски

Изобретение относится к квантовой электронике, в частности к твердотельным активным материалам и пассивным модуляторам добротности резонаторов лазеров

Изобретение относится к области квантовой электроники, к способам приготовления лазерных сред на основе монокристаллов с центрами окраски

Изобретение относится к области квантовой электроники, а именно к конструкции активного элемента лазера, и может быть использовано при создании лазеров на красителях в твердой матрице

Изобретение относится к квантовой электронике, а именно к материалам для лазерной техники и предназначено для применения в твердотельных лазерах с длиной волны стимулированного излучения в интервале от 1,9 мкм до 2,0 мкм

Изобретение относится к области оптоэлектроники и интегральной оптики, в частности к способу получения направленного когерентного излучения света устройствами микронного размера

Изобретение относится к области лазерной техники и промышленно применимо в перестраиваемых лазерах для целей волоконно-оптической связи и спектроскопии

Изобретение относится к оптической схеме для ослабления оптического шума

Изобретение относится к области лазерной техники и более конкретно - к лазерным медицинским инструментам для стоматологических, дерматологических, оторинологических применений, в том числе с использованием эндоскопов
Изобретение относится к получению нового сложного оксида на основе иттрия и алюминия, являющегося перспективным материалом для оптоэлектроники

Изобретение относится к материалам для лазерной техники, а именно к монокристаллическим материалам, предназначенным для получения активных элементов твердотельных лазеров
Наверх