Способ получения структур для интегральных схем с диэлектрической изоляцией элементов

 

Использование: технология изготовления интегральных схем. Сущность изобретения: способ изготовления структур интегральных схем с диэлектрической изоляцией элементов включает соединение двух кремниевых пластин с использованием соединительного слоя следующего состава, мол.%: диоксид кремния, полученный плазмохимическим способом, 0,077Т-14,216, оксид бора остальное до 100% , где Т - температура синтеза боросиликатных соединений. Термообработку проводят в гомогенной газовой среде. 4 ил.

Изобретение относится к микроэлектронике, а именно технологии изготовления структур для интегральных схем с диэлектрической изоляцией элементов.

Известен способ получения структур для интегральных схем с диэлектрической изоляцией элементов, включающий механическую обработку подложек монокристаллического кремния, формирование на поверхности подложек рельефа с углублениями и выступами, последовательное формирование на поверхности со стороны рельефа скрытого слоя, пленки диоксида кремния, областей монокристаллического кремния [1].

Недостатком этого способа является то, что эпитаксиальный слой кремния в углублениях рельефа имеет относительное низкое структурное совершенство. Это обусловлено особенностью эпитаксиального наращивания кремния на маскированный рельеф. Скорость роста кремния на ровной поверхности и в углублениях различна, возникают напряжения и как следствие - дефекты роста.

Кроме этого, сложность технологии снижает процент выхода годных структур.

Наиболее близким техническим решением, выбранным в качестве прототипа, является способ изготовления полупроводниковых приборов, включающий механическую обработку подложек кремния, формирование на поверхности монокристаллического кремния подложки рельефа с углублениями и выступами и скрытого слоя, формирование слоя диоксида кремния и слоя поликристаллического кремния больше глубины рельефа, полировку его до получения плоской поверхности, соединение его с поликристаллической пластиной и термическую обработку при температуре большей 1100оС, вскрытие областей монокристаллического кремния [2].

Недостатком известного способа являются высокие требования к геометрическим формам соединяемых поликристаллических слоев, трудности с использованием кремниевых пластин больших диаметров, особые требования к среде процесса. Преодоление этих недостатков удорожает структуры, не позволяет получать структуры больших диаметров. В прототипе идет речь о диффузной или атомарной сварке посредством поликристаллических слоев кремния. Успешное проведение данного процесса обусловлено выполнением следующих требований: разброс по толщине пластин должен быть меньше размеров зерен поликристаллического кремния (порядка 80,0 нм); необходимость удаления нарушенного слоя по всем полированным поликристаллическим поверхностям, в противном случае из-за отсутствия соединительного слоя концентраторы напряжения нарушенного слоя приведут к снижению процента выхода годных структур на операциях механической обработки; обрезка по кромке не менее 2 мм соединяемых пластин, так как при механической полировке происходит снятие фаски по кромке, что приводит к плохому качеству соединения по кромке пластин и дальнейшим сколам краев структур при механической обработке; использование подложек больших диаметров (больших 100 мм) еще больше усложняет техническую сторону требований к геометрической форме поверхности соединяемых пластин.

Процесс соединения поликристаллических слоев без соединительного слоя должен протекать либо в вакууме, либо в полированных поверхностях должны формировать каналы для удаления либо среды сварки, либо продуктов газовыделения поликристаллического кремния при нагревании свыше 1100оС, Если не проводить вакуумирование процесса (делающего процесс более сложным и дорогим) или не формировать каналы газовыделения (также удорожающие структуры), то будет происходить снижение качества соединительного слоя за счет наличия в нем продуктов газовыделения и как следствие - снижение процента выхода годных структур.

При предлагаемом способе получения структур для интегральных схем с диэлектрической изоляцией элементов, включающем механическую обработку подложек кремния, формирование на поверхности монокристаллического кремния рельефа с углублениями и скрытого слоя, формирование слоя диоксида кремния толщиной большей глубины рельефа, соединение подложек между собой, термическую обработку под давлением и вскрытие областей монокристаллического кремния, после формирования слоя поликристаллического кремния толщиной на 5 - 100% больше глубины рельефа на подложки с рельефом и без рельефа наносят дополнительный слой диоксида кремния, а на него наносят соединительный слой из раствора оксида бора, состав которого определяется соотношением, моль.%: Порошок диоксида кремния, полученный плазмохимическим способом, (0,077 Т - 146,1) - (0,077 Т - 157,2) Оксид бора (0,077 Т + 46,1) - (-0,077 Т + 57,2), где Т - температура синтеза соединений боросиликатной системы, которая не превышает 1215оС, а термообработка производится в гомогенной среде (газовой), например в кислородной или азотной.

Применение раствора оксида бора указанного состава в качестве основы соединительного слоя позволяет избежать высокоточной полировки и фаски, образующейся при полировке по кромке пластины. Толщина соединительного слоя, а также сам его состав позволяют сгладить дефекты соединяемых поверхностей, а нарушенный слой и фаска по кромке не образуется.

Наличие синтезируемого соединительного слоя, находящегося под давлением, толщина которого уменьшается, а плотность в процессе синтеза увеличивается, способствует удалению газообразных продуктов синтеза по кромке структуры, а значит формированию бездефектного соединительного слоя.

Нанесение слоя из раствора в органической среде позволяет применить метод пульверизации и получить плотные равномерные соединительные слои. Это повышает качество соединяемых структур. Органическая среда играет роль связующей добавки, которая высыхает и удаляется при термической обработке.

На фиг. 1 показана кремниевая подложка после формирования скрытого слоя, пленки диоксида кремния, слоя поликристаллического кремния, пленки диоксида кремния и нанесенного соединительного слоя указанного состава; на фиг. 2 - монокристаллическая подложка без рельефа после нанесения пленки диоксида кремния и соединительного слоя указанного состава; на фиг. 3 - структура после соединения кремниевых подложек; на фиг. 4 - структура после вскрытия областей монокристаллического кремния.

На чертежах приняты следующие обозначения: кремниевая подложка с рельефом n-типа проводимости 1, скрытый слой n+-типа проводимости 2, пленка диоксида кремния 3, слой поликристаллического кремния без рельефа 4, пленка диоксида кремния 5, соединительный слой указанного состава на подложке с рельефом 6, кремниевая подложка без рельефа 7, пленка диоксида кремния на подложке без рельефа 8, соединительный слой указанного состава на подложке с рельефом 9, соединительный слой из соединений боросиликатной системы 10, область монокристаллического кремния после вскрытия 11, пленка диоксида кремния 12.

Способ осуществляют следующим образом.

На кремниевой подложке 1 n-типа проводимости формируют рельеф с углублениями и выступами глубиной 25 - 65 мкм. Диффузией создают скрытый слой n+-типа 2, толщиной 3 - 6,5 мкм. На окисленный слой рельефа 3 наносят слой поликристаллического кремния 4 толщиной 26,3 - 130 мкм эпитаксиальным наращиванием. На него наносят пленку диоксида кремния 5 толщиной 0,7 - 1,4 мкм, затем на нее методом пульверизации наносят слой 6 следующего состава, мас. % : оксид бора 3 - 10, порошок диоксида кремния, полученного плазмохимическим способом типа "Элплаз К" 3 - 10, изопропиловый спирт 94 - 80 толщиной 1,3 - 63,7 мкм. На вторую кремниевую пластину 7 без рельефа (см. фиг. 2) после нанесения пленки диоксида кремния толщиной 0,7 - 1,4 мкм также наносят соединительный слой указанного состава 9, такой же толщины, как на первую пластину, тем же методом. Пластины соединяют под давлением не менее 0,3 кг/м2 и производят термическую обработку в кислородной среде с расходом кислорода (5,6 - 83) х 10-5 м3/с при оптимальной температуре 1200 - 1215оС в течение 10 - 30 мин. Затем производят вскрытие областей монокристаллического кремния двусторонней шлифовкой и односторонней полировкой. Завершается процесс нанесением пленки диоксида кремния 12 (см. фиг. 4) толщиной 0,7 - 1,4 мкм.

Применение оксида бора в качестве основного компонента соединительного слоя позволяет получать дешевые структуры больших диаметров, исключить применение высокоточной планирезации соединяемых поверхностей.

Формула изобретения

СПОСОБ ПОЛУЧЕНИЯ СТРУКТУР ДЛЯ ИНТЕГРАЛЬНЫХ СХЕМ С ДИЭЛЕКТРИЧЕСКОЙ ИЗОЛЯЦИЕЙ ЭЛЕМЕНТОВ, включающий механическую обработку кремниевых подложек, формирование на поверхности монокристаллической подложки рельефа с углублениями и скрытого слоя, формирование слоя диоксида кремния и слоя поликристаллического кремния толщиной больше глубины рельефа, соединение подложек между собой, термообработку под давлением и вскрытие областей монокристаллического кремния, отличающийся тем, что слой поликристаллического кремния формируют толщиной на 5 - 100% больше глубины рельефа, на слой поликристаллического кремния и подложку без рельефа дополнительно наносят слои диоксида кремния, на которые наносят соединительный слой состава, мол. %: Диоксид кремния, полученный плазмохимическим способом 0,077 Т - 14,216 Диоксид бора Остальное где Т - температура термообработки, oС, при этом термообработку проводят в гомогенной газовой среде при температуре синтеза боросиликатных соединений.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4



 

Похожие патенты:

Изобретение относится к производству полупроводниковых приборов и ИС, преимущественно к производству кремниевых структур с диэлектрической изоляцией

Изобретение относится к микроэлектронике, в частности к способам разделения полупроводниковых пластин на отдельные кристаллы
Изобретение относится к технологии производства полупроводниковых интегральных схем, в частности к изготовлению быстродействующих интегральных схем на кремниевых структурах с диэлектрической изоляцией (КСДИ)

Изобретение относится к микроэлектронике

Изобретение относится к микроэлектронике, в частности к технологии изготовления полупроводниковых приборов и интегральных микросхем

Изобретение относится к технологии полупроводниковых приборов, в частности к технологии изготовления полупроводниковых структур, используемых для производства диодов, транзисторов, тиристоров, интегральных схем и кремниевых структур с диэлектрической изоляцией

Изобретение относится к технологии производства интегральных схем, а более конкретно к способу изготовления диэлектрической изоляции компонентов ИС

Изобретение относится к микроэлектронике и может быть использовано в технологии изготовления интегральных микросхем и наноструктур различного назначения

Изобретение относится к полупроводниковой технике

Изобретение относится к способам создания многослойных структур "кремний на изоляторе" с захороненным слоем изолятора
Наверх