Способ фотометрического определения титана

 

Сущность изобретения: переводят титан в ионный ассоциат с бромпирогалловым красным (БПК) и кристаллическим фиолетовым (КФ) и флотацией его при pH 0,75 - 0,85 толуолом с последующим разрушением этанолом с выделением эквивалентного титану количества кристаллического фиолетового. Количественную регистрацию осуществляют фотометрированием толуольно-этанольного экстракта при 590 нм. Условия образования ассоциата (1,6-2,4)10-4 М концентрация БПК и (1,2-1,6)10-4 М КФ. 1 табл.

Изобретение относится к области химии, а более конкретно к фотометрическим методам определения титана в различных объектах.

Известны фотометрические методы определения титана, основанные на реакции его взаимодействия с бромпирогаллоловым красным и органическими основаниями - катионными поверхностно-активными веществами (ПАВ) цетилтриметиламмонием и цетилпиридинием (ЦП). Максимальное значение молярного коэффициента поглощения равно 2,6104. Эти способы не обладают высокой чувствительностью и избирательностью по отношению к титану.

Наиболее близким к изобретению является способ фотометрического определения титана, включающий взаимодействие его с бромпирогаллоловым красным (БПК) и двумя ПАВ - катионным ЦП и неионным ОП-10 с образованием ионного ассоциата Ti-БПК-ЦП-ОП-10 (3). Этот способ заключается в следующем: в среде близкой к нейтральной рН 6,5-7,5 при содержании в растворе 110-4 М БПК, 1,410-4 М ЦП и 810-4 М ОП-10 титан образует ионный ассоциат Ti-БПК-ЦП-ОП-10 с соотношением компонентов Ti:БПК:ЦП=1:4:4. Молярный коэффициент светопоглощения составляет 6,3104, max=620 нм. Градуировочный график линеен при концентрации титана 2,0-20 мкг в 25 мл раствора. Минимальная определяемая концентрация титана, рассчитанная по формуле Смин=0,05/ l (0,05 - надежно измеряемая величина оптической плотности; l - толщина слоя кюветы = 1 см, - коэффициент молярного поглощения), равна 7,910-7М.

Определению титана не мешают 10 кратные избытки Cu, Ni, Pb и Mn.

У этого способа невысокая чувствительность и избирательность.

Цель изобретения - повышение чувствительности и избирательности определения титана.

Поставленная цель достигается тем, что в способе фотометрического определения титана, включающем обработку пробы бромпирогаллоловым красным и органическим основанием с последующим фотометрированием, пробу обрабатывают бромпирогаллоловым красным и основным красителем кристаллическим фиолетовым при концентрациях (1,6-2,4)10-4 М и (1,2-1,6)10-4М, соответственно и рН 1,5-2,5; полученный ионный ассоциат флотируют толуолом из среды рН 0,75-0,85, отделяют его от водной фазы, промывают водой, растворяют флотированный осадок в этаноле и полученный раствор фотометрируют.

Сущность изобретения заключается в замене бесцветных органических оснований поверхностно-активных веществ ЦП и ОП-10 у прототипа интенсивно окрашенным основным красителем КФ в предлагаемом способе. Соотношение Тi:БПК: КФ=1:2:2.

Применение КФ и флотация ассоциата с последующей промывкой водой и разрушением в заноле с выделением эквивалентного титану количества КФ привели к повышению молярного коэффициента поглощения ассоциата до 2105 вместо 6,710-4 у прототипа. Минимальная определяемая концентрация титана равна 2,510-7М.

Снижение кислотности раствора с рН 6,5-7,5 до рН 0,75-0,85 при флотации ассоциата увеличило избирательность реакции. Определению титана не мешают Cu, Ni, Pb, Mn и другие двухвалентные металлы.

Другие основные красители трифенилметанового ряда (метиловый фиолетовый, бриллиантовый зеленый и малaхитовый зеленый). Также способны образовывать с титаном и БПК соответствующие ассоциаты. Однако молярные коэффициенты поглощения этих ассоциатов значительно ниже и составляет (0,9-1,3)105 в зависимости от применяемого красителя. Такое снижение ассоциатов обусловлено менее интенсивной окраской самих красителей и снижением степени флотации ассоциатов толуолом. Кроме того, флотация ассоциатов с другими красителями происходит в менее кислой среде.

В качестве флотоагента могут быть использованы только бескислородные растворители: бензол, ксилол, толуол. Последний выбран как наименее токсичный, обладающий в то же время высокой степенью флотаций. Кислородсодержащие растворители - спирты, кетоны и др. не могут быть использованы по причине большой флотируемости ассоциатов БПК-КФ, а следовательно, высокого значения ОП раствора холостого опыта (Ахол 2,0), на фоне которого нельзя определять микроколичества титана.

При выходе концентрации титана за границы подчинения закону Бера оптическая плотность получается заниженной. При концентрации меньше нижней границы (0,13 мкг в 10 мл или 2,710-6 М) в связи с большими избытками БПК и КФ по отношению к титану начинают оказывать влияние холостая проба раствора, спектр светопоглощения которой накладывается на спектральную кривую раствора ионного ассоциата. Кроме того, при малых концентрациях титана, а следовательно, и небольших значениях оптической плотности 0,03 возрастает ошибка, связанная с самим прибором - спектрофотометром, так называемая приборная ошибка анализа. При концентрации титана выше верхней границы (1,6 мкг в 10 мл или 3,3510-5 М) оптическая плотность также не достигает своего оптимального значения ввиду недостатка красителей для связывания комплекса титана с БПК в ассоциат с кристаллическим фиолетовым. Понижение оптической плотности наблюдается также и при выходе за пределы оптимальных значений БПК и КФ. Если БПК взять меньше 1,610-4 М, то его становится недостаточно для полноты образования ионного ассоциата, что влечет за собой уменьшение оптической плотности. При избыточных количествах >2,410-4 M БПК оптическая плотность оказывается заниженной за счет более высокого значения оптической плотности раствора холостого опыта. То же самое происходит и при выходе за пределы граничных концентраций кристаллического фиолетового. При концентрации КФ<1,210-4 М не достигается полнота образования ионного ассоциата, что уменьшает его оптическую плотность. При увеличении концентрации КФ>1,610-4М возрастает оптическая плотность холостого опыта, за счет чего снижается оптическая плотность раствора ассоциата.

При снижении рН<0,75 оптическая плотность раствора ионного ассоциата уменьшается за счет снижения его флотируемости. При увеличении кислотности рН>0,85 начинает флотироваться соединение БПК-КФ и холостая проба становится сильно окрашенной.

Разработанный способ использован для определения титана в тонких магнитных пленках системы Fe-Ni-Co-Ti, изготовленных на стеклянных подложках. Особенностью анализа таких пленок по причине малой толщины в несколько микрон и массы 0,2-2 мг является растворение их без взятия навески и определение весового содержания каждого из компонентов в растворе с последующим расчетом их %-ного содержания, исходя из общей массы в мкг.

Для определения железа использована реакция образования комплексного соединения с 1,10-фенантролином, для определения никеля взят диметилглиоксим, а кобальта - нитрозо-R-соль. Эти реакции не отличаются высокой чувствительностью, хотя и селективны, так что большая часть раствора расходуется на их определение.

Ввиду малого содержания титана в пленке, порядка 2%, во всем растворе содержится от 4 до 40 мкг титана, т.е. 0,16-1,6 мкг в мл при объеме колбы 15 мл. Поэтому для определения титана требуется высокочувствительная реакция, что и достигается изобретением.

Растворение пленки. Промытую в дистиллированной воде пленку помещают в стакан емк. 50 мл и растворяют при нагревании в HCl (1:1). Раствор переносят в мерную колбу емк. 25 мл и доливают до метки водой. Ход анализа. Для определения титана аликвотную часть раствора в пределах подчинения закону Бера, помещают в делительную воронку емкостью 100 мл, прибавляют 1 мл 1 % -ного раствора аскорбиновой кислоты, 2 мл буферного раствора с рН 2, 1 мл 210-4 М БПК, 0,7 мл 210-4 М КФ, 0,3 мл 2М раствора HCl для создания рН 0,8 и доводят водой до 5 мл. Раствор флотируют 5 мл толуола в течение 1 мин, отделяют водную часть и промывают органическую фазу 5 мл воды. После отделения водной фазы к толуольному раствору прибавляют 5 мл этанола, растворяют флотированный осадок при встряхивании и измеряют оптическую плотность толуольно-этанольного раствора при 590 нм в кювете с l=1 см относительно раствора хoлостого опыта. В этом случае достигается максимальное значение оптической плотности, а следовательно, и , который равен 2105. Способ определения титана при других условиях осуществляют аналогично. Примеры определения титана приведены в табл. Погрешность определения титана составляет 2-5%. Содержание титана рассчитывают по градуировочному графику, построенному по стандартному раствору титана 110-4 М. Железо (II), никель и кобальт не мешают определению титана. Ввиду того, что после растворения пленки железо переходит в железо (III), его восстанавливают до железа (II) с помощью аскорбиновой кислоты.

Формула изобретения

СПОСОБ ФОТОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ ТИТАНА, включающий обработку пробы бромпирогалловым красным и органическим основанием с последующим фотометрированием, отличающийся тем, что пробу обрабатывают бромпирогалловым красным и основным красителем кристаллическим фиолетовым при концентрациях (1,6 - 2,4) 10-4 М и (1,2 - 1,6) 10-4 М соответственно и pH 1,5 - 2,5, полученный ионный ассоциат флотируют толуолом из среды с pH 0,75 - 0,85, отделяют его от водной фазы, промывают водой, растворяют флотированный осадок в этаноле и полученный раствор фотометрируют.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к аналитической химии, а именно к способам определения хрома (VI), включающим переведение хрома (VI) в комплексное соединение с дифенилкарбазидом (ДФК) на твердой фазе и может быть использовано при анализе речных, питьевых и сточных вод

Изобретение относится к аналитической химии

Изобретение относится к аналитической химии, а именно к анализу сахарозы, и может быть использовано в практике заводских контрольно-аналитических лабораторий, центральных заводских лабораторий химических предприятий и при биохимических исследованиях

Изобретение относится к органической и аналитической химии, конкретно к веществу, полученному химическим путем, (5-нитрохинолил-8-тио, 4-карбоксифенил) ртути формулы в качестве аналитического реагента для фотоколориметрического определения сульфгидрильных соединений (тиолов, сероводорода)

Изобретение относится к исследованиям или анализу вредных веществ в воздухе с использованием фермента уреазы

Изобретение относится к аналитической химии, в частности к экстракционно-спектрофотометрическому определению микроколичеств неорганических фосфатов (V) и может быть использовано для анализа различных объектов окружающей среды (питьевая вода, природные воды, сплавы, пищевые продукты и т.д.)

Изобретение относится к аналитической химии, конкретно спектрофотометрии, и может использоваться при анализе растворов, содержащих микроколичества рения в присутствии нитрат-, сульфат-, перхлорат-, хлорид-ионов, меди, молибдена, железа (III), урана (VI), суммарное содержание которых во много раз превышает содержание рения

Изобретение относится к аналитической химии и может быть использовано для определения кадмия в промышленных водах

Изобретение относится к аналитической химии и может быть использовано при анализе растворов, содержащих хлорокомплексы палладия

Изобретение относится к области аналитической химии, а именно индикации и анализу аммиака, его обнаружению и количественному определению в исследуемых пробах

Изобретение относится к спектрофотометрическим методам определения физиологически активных нитрилов алифатических предельных кислот

Изобретение относится к оптическим газоанализаторам и предназначено для определения различных газов в воздухе производственных помещений зернохранилищ, зерноперерабатывающих предприятий, а также в химической, фармацевтической промышленности и других отраслях

Изобретение относится к аналитическому контролю объектов окружающей среды на содержание компонентов ракетных топлив, обладающих токсичными свойствами

Изобретение относится к аналитической химии, а именно к способам экспресс-определения наличия несимметричного диметилгидразина (НДМГ) путем индикации на поверхностях, в частности, для контроля целостности емкостей, трубопроводов и агрегатов химических производств, объектов хранения и уничтожения химического оружия и компонентов ракетных топлив, а также для санитарно-химического контроля
Наверх