Способ получения слитка из нержавеющей стали, стабилизированной титаном

 

Использование: изобретение предназначено для получения слитков из коррозионно-стойких сталей, стабилизированных титаном, путем поочередного переплава в кристаллизаторе по крайней мере двух электродов. Сущность изобретения: способ предусматривает наведение шлака, содержащего, мас.%: фторид кальция 8 - 15; оксид титана 37 - 48; раскисление шлаковой ванны, дополнительное введение в кристаллизатор шлаковой смеси и перегрев шлаковой смеси перед сменой электродов. Характерной особенностью способа является введение в шлаковую смесь перед сменой электродов оксида тиатана в количестве, превышающем в 1,3 - 2,0 раза содержание его в первоначальном шлаке. 1 табл.

Изобретение относится к металлургии, а именно к электрошлаковому переплаву сталей, предназначено для использования при получении слитков коррозионностойких сталей, стабилизированных титаном, путем поочередного переплава двух и более электродов в кристаллизаторе.

Известен способ электрошлакового переплава металлов и сплавов, включающий наплавление слитка в водоохлаждаемом кристаллизаторе поочередным переплавом двух и более электродов и перегрев шлаковой ванны перед сменой электродов на 20-200оС.

Недостатком этого способа является то, что в случае его применения при выплавке слитков из титансодержащих сталей под флюсом, содержащим оксид титана, наблюдается неравномерное распределение титана по высоте слитка из-за уменьшения процентного содержания оксида титана в шлаке по ходу переплава и, как следствие, сдвиг химической реакции [Ti] + [O] [TiO2] вправо, т.е. постепенное увеличение угара титана в течение плавки. В результате металл верхних горизонтов слитка не выдерживает испытания на межкристаллитную коррозию (МКК).

Уменьшение содержания оксида титана в шлаке по ходу переплава определено экспериментально путем отбора проб шлака в различные моменты плавки, которое вызвано его испарением с поверхности шлаковой ванны и восстановлением его алюминием, который дается в течение плавки в качестве раскислителя шлака.

Кроме того, при использовании данного способа на поверхности слитка имеют место гарнисажные кольцевые пояски, образующиеся в результате переохлаждения шлаковой ванны во время перерыва процесса. В результате этого поверхность слитка требует дополнительной зачистки или обдирки, что повышает трудоемкость и снижает выход годного.

Также известен способ получения слитка, включающий поочередный электрошлаковый переплав электродов в кристаллизаторе, перегрев шлаковой ванны перед сменой электродов и дополнительное введение в кристаллизатор шлаковой смеси в количестве 1/3-1/6 ее первоначальной массы перед перегревом шлаковой ванны. Данный способ принят за прототип.

Известный способ позволяет ликвидировать пережимы на слитке из-за увеличенной тепловой емкости шлаковой ванны в момент перерыва процесса переплава.

Однако данный способ при получении слитка из нержавеющей стали, стабилизированной титаном, не позволяет устранить неравномерное распределение титана по высоте слитка (наблюдается повышенный угар титана к концу плавки), в результате чего металл верхних горизонтов слитка проявляет склонность к межкристаллитной коррозии, что снижает качество металла. Это вызвано тем, что количества оксида титана, вводимого вместе со шлаковой смесью перед перерывом процесса, оказывается недостаточным для того, чтобы восполнить его потери на испарение и восстановление во время переплава очередного электрода.

Целью изобретения является повышение качества металла слитка.

Поставленная цель достигается благодаря тому, что в способе получения слитка из нержавеющей стали, стабилизированной титаном, включающем поочередный электрошлаковый переплав электродов в кристаллизаторе с наведением шлака, содержащего 8-15% фторида кальция; 37-48% оксида алюминия; 19-26% оксида кальция; 2-5% оксида магния; 15-25% оксида титана, и раскисление шлаковой ванны, дополнительное введение в кристаллизатор шлаковой смеси и перегрев шлаковой ванны перед сменой электродов, перед сменой электродов в шлаковую смесь вводят оксид титана в количестве, превышающем в 1,3-2,0 раза его содержание в первоначальном шлаке.

Указанный состав шлака с содержанием оксида титана 15-25% определен опытным путем и обеспечивает высокие технологические свойства - возможность эффективно подавлять угар титана, высокую рафинирующую способность и способность формировать гладкую поверхность слитка.

При содержании оксида титана в шлаке менее 15% снижается его способность "удерживать" титан в металле, при этом сохранить титан можно лишь за счет большого количества вводимого раскислителя (алюминия) 4-6 кг/т и более. Однако металл, переплавленный с таким количеством алюминия не всегда выдерживает испытания на межкристаллитную коррозию и, кроме того, из-за повышенного содержания алюминия в металле по границам аустенитного зерна образуются интерметаллидные пленки (типа Ni3Al), охрупчивающие сталь.

При содержании оксида титана в шлаке более 25% уменьшается его рафинирующая способность в результате снижения основности, снижаются технико-экономические показатели процесса (повышается электропроводность), а также способность шлака формировать качественную поверхность слитка, в результате чего металл слитка имеет повышенный балл неметаллических включений, особенно сульфидных, возрастает удельный расход электроэнергии, поверхность слитка имеет шероховатости и неровности.

Коэффициент превышения содержания оксида титана в добавляемой шлаковой смеси относительно первоначального его содержания в шлаке, равный 1,3-2,0, найден экспериментально и обеспечивает достижение поставленной цели.

Введение в шлаковую смесь оксида титана в количестве, в 1,3-2,0 раза превышающем его содержание во флюсе, позволяет восполнить его потери во время переплава очередного электрода, устранить угар и обеспечить заданное равномерное распределение титана по высоте слитка.

Введение в шлаковую смесь оксида титана в количестве менее заявляемого не позволяет восполнить его потери во время плавления предыдущего электрода и металл слитка, полученный из последующего электрода, имеет повышенный угар титана, что приводит к неравномерному распределению титана по высоте слитка, а качество металла находится на низком уровне из-за склонности к межкристаллитной коррозии.

Введение в шлаковую смесь оксида титана в количестве более заявляемого значения ведет к чрезмерному его увеличению в шлаковой ванне, что снижает основность и рафинирующую способность шлака. При этом металл слитка имеет повышенный балл неметаллических включений (сульфидов). Кроме того, высокое содержание оксида титана заметно снижает технико-экономические показатели процесса, снижается производительность, возрастает расход электроэнергии (из-за повышенной электропроводности шлака).

Опробование предлагаемого способа проводили при выплавке слитка размерами 460/ 400 х 1400 мм массой 1,8 т путем поочередного переплава трех электродов (отходов кузнечного производства) из стали 12Х18Н10Т в водоохлаждаемый кристаллизатор под шлаком, содержащим 8-15% фторида кальция; 37-48% оксида алюминия; 19-26% оксида кальция; 2-5% оксида магния и 15-25% оксида титана, в количестве 55 кг.

Химический состав стали 12Х18H10Т был следующий: углерод 0,12%; марганец 0,99% ; кремний 0,71%; хром 17,91%; никель 10,05%; титан 0,64%; фосфор 0,023%; сера 0,018%.

Указанный шлак получен путем смешивания базового флюса АН-295 в количестве 38,8-45,3 кг и шлака титанового, содержащего 85% оксида титана, в количестве 9,7-16,2 кг.

На электродах была закреплена алюминиевая проволока из расчета 2 кг/т стали.

Было получено 6 слитков. При этом после переплава первого электрода и замены "огарка" на второй электрод вводили дополнительную порцию шлаковой смеси, содержащей 4,1-7,7 кг АН-295 и 2,3-5,9 кг титанового шлака, в количестве 10 кг, что обеспечивало содержание оксида титана в смеси, в 1,3-2,0 раза превышающем его содержание в первоначальном шлаке.

Далее шлаковую ванну перегревали путем увеличения напряжения на 6-10 В и производили замену электродов. Время перерыва процесса составляло 4-5 мин. Данную операцию повторяли в конце переплава второго электрода и замены его "огарка" на третий электрод.

Из полученных таким образом слитков на радиально-ковочной машине ковали заготовки для проката сечением 200 х 200 х 1100 мм (по 4 заготовки из слитка). От заготовок отрезались темплеты для изготовления образцов для испытания на МКК, микрошлифов для определения балла неметаллических включений и контроля химического состава металла (углерода, титана).

Образцы подвергали закалке с температуры 1070оС в воде и провоцирующему отпуску 650оС.

Кроме того, были выплавлены слитки с содержанием оксида титана в добавляемой шлаковой смеси, выходящим за заявляемые пределы, а также слитки по технологии аналога и прототипа.

Результаты опробования приведены в таблице.

Из таблицы видно, что применение предлагаемого способа (примеры 1-6) позволяет получать качественные слитки.

Введение оксида титана перед сменой электродов в шлаковую ванну в количестве, выходящем за заявляемые пределы, приводит либо к неравномерному распределению титана по высоте слитка и неудовлетворительному результату на МКК (примеры 7-9), что приводит к образованию тpещин, либо к повышению балла неметаллических включений и неровной поверхности слитков (примеры 10-12).

Применение предлагаемого способа по сравнению с прототипом позволяет при получении слитка равномерно распределить титан по высоте слитка, снизить балл неметаллических включений, что повышает качество металла.

Формула изобретения

СПОСОБ ПОЛУЧЕНИЯ СЛИТКА ИЗ НЕРЖАВЕЮЩЕЙ СТАЛИ, СТАБИЛИЗИРОВАННОЙ ТИТАНОМ, включающий поочередный электрошлаковый переплав электродов в кристаллизаторе с наведением шлака, содержащего 8 - 15% фторида кальция, 37 - 48% оксида алюминия, 19 - 26% оксида кальция, 2 - 5% оксида магния, 15 - 25% оксида титана, и раскисление шлаковой ванны, дополнительное введение в кристаллизатор шлаковой смеси и перегрев шлаковой ванны перед сменой электродов, отличающийся тем, что, с целью повышения качества металла слитка, перед сменой электродов в шлаковую смесь вводят оксид титана в количестве, превышающем в 1,3 - 2,0 раза его содержание в первоначальном шлаке.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к области получения слитков из стружки

Изобретение относится к области электрошлакового переплава металла, в частности к установкам получения непрерывным электрошлаковым методом крупногабаритных изделий
Изобретение относится к специальной электрометаллургии и может быть использовано для изготовления электрошлаковым переплавом заготовки переменного сечения, например, корпуса энергетической арматуры

Изобретение относится к металлургии, в частности к производству сталей и сплавов методом электрошлакового переплава

Изобретение относится к технологии изготовления плавленых флюсов, применяемых для сварки и электрошлакового переплава металлов и сплавов

Изобретение относится к металлургии, а именно к металлургической переработке вторичных стальных некомпактных материалов в виде стружки, листовой обрези и тому подобных отходов производства
Изобретение относится к специальной электрометаллургии, в частности к электрошлаковому литью, и может быть использовано для получения деталей
Изобретение относится к пирометаллургии, в частности к извлечению благородных металлов из цинковых осадков (шламов), получаемых в результате осаждений (цементации) благородных металлов из цианистых растворов цинковой пылью

Изобретение относится к области черной и цветной металлургии, в частности к электропечам с погруженными в шлаковый расплав электродами

Изобретение относится к металлургии, в частности к получению многослойных слитков методом электрошлакового переплава

Изобретение относится к металлургии благородных металлов, в частности к пирометаллургической переработке сырья и концентратов золота и серебра

Изобретение относится к электрошлаковой наплавке и может быть использовало для упрочнения преимущественно породоразрушающего инструмента (билы размольно-дробильного оборудования, зубья ковшей экскаваторов, коронки (рыхлителей бульдозеров, ножи отвалов и т.п.), а также других деталей, подвергающихся интенсивному износу
Изобретение относится к специальной электрометаллургии, точнее к электрошлаковому литью, и может быть использовано для получения литых деталей преимущественно из компактных отходов меди и (или) ее сплавов
Наверх