Способ получения углеродного изделия

 

Формуют изделие из карбида кремния и связующего, в качестве которого используют смесь сажи, фенолформальдегидной смолы и этилового спирта при следующем соотношении компонентов, мас. % : сажа 30 - 50; фенолформальдегидная смола 1 - 10; этиловый спирт 40 - 60 или пироуглерод в количестве 5 - 50 г на 100 г карбита кремния. После формования сначала осуществляют пропитку изделия жидким кремнием при 1600 - 1700°С в вакууме, а затем термохимическую обработку хлором при 900 - 1100°С. 1 табл.

Изобретение относится к области получения микропористых углеродных материалов, в частности компактных адсорбентов.

Известен способ получения углеродного трубчатого изделия из карбида кремния. Способ заключается в формовании или экструдировании пасты, состоящей из порошка карбида кремния и промышленных синтетических смол в качестве связующего. Затем проводится термообработка изделий для формирования требуемых объемов транспортной пористости, а микропористая структура создается в процессе термохимической обработки.

Недостатком этого способа является то, что использование в качестве связующего синтетической смолы не обеспечивает достаточно высокой механической прочности изделий. Кроме того, в таких изделиях полностью не реализуются высокие адсорбционные свойства углерода, получаемого из карбида кремния, так как адсорбционная емкость у этих материалов значительно ниже, чем у адсорбентов, полученных термохимической обработкой дисперсного карбида кремния.

Техническим результатом предложенного решения является повышение прочности и улучшение адсорбционных свойств углеродных микропористых изделий, который достигается тем, что в качестве связующего используют смесь, содержащую сажу, фенолформальдегидную смолу и этиловый спирт при следующем соотношении компонентов, мас.%: Cажа 30-50 Фенолформальдегидная смола 5-10 Спирт этиловый 40-60 или пироуглерод в количестве 5-50 г на 100 г карбида кремния, после формования заготовку пропитывают жидким кремнием при температуре 1600-1700оС, а термохимическую обработку ведут хлором при температуре 900-1100оС.

Предложенный способ осуществляют следующим образом.

Из порошка карбида кремния и связующего формуют заготовку детали заданной формы. При формовании заготовки порошок карбида кремния смешивают с суспензией состав, мас. % : сажа 30-50; фенолформальдегидная смола 5-10; этиловый спирт 40-60, в количестве 5-50 г на 100 г карбида кремния, и из полученной шихты формуют заготовку. Затем проводят термообработку заготовки при температуре 150оС для отверждения смолы. Или же используют пироуглеродное связующее, добавленное к порошку карбида кремния или вводимое путем термической обработки в токе природного газа.

Снижение содержания связующего ниже 5 г на 100 г карбида ухудшает конструкционную прочность материала и его адсорбционные характеристики.

При увеличении содержания связующего выше 50% адсорбционные свойства материала не изменяются, но снижается его конструкционная прочность.

Содержание в суспензии сажи менее 30 мас.% может привести к разрушению заготовки в процессе формования.

При содержании сажи более 50 мас.% заготовку сформовать не удается вследствие низкой влажности шихты.

При содержании фенолформальдегидной смолы в суспензии менее 5 мас.% заготовка разрушается в процессе формования.

Увеличение содержания смолы более 10 мас.% приводит к образованию трещин в заготовке в процессе отверждения.

Сформованную тем или иным способом заготовку помещают в вакуумную печь, где осуществляют пропитку жидким кремнием при температуре 1600-1700оС в вакууме. При этом происходит химическое взаимодействие жидкого кремния и углерода (пироуглерода или сажи) с образованием вторичного карбида кремния. Вторичный карбид кремния образует непрерывный по всему объему заготовки каркас, связывающий зерна исходного карбида кремния. Имеющиеся в заготовке поры заполняются в процессе пропитки кремнием. При температуре ниже 1600оС не протекает реакция образования карбида и цель изобретения не достигается. При температуре выше 1700оС кремний начинает испаряться в вакуумное пространство печи. Таким образом получают беспористую заготовку, состоящую из частиц карбида кремния, связанных каркасом из вторичного карбида кремния и свободного кремния. Затем заготовку изделия подвергают обработке хлором при температуре 900-1100оС. В результате хлорирования карбида кремния образуется углерод с развитой микропористой структурой. Свободный кремний в процессе хлорирования удаляется из заготовки в виде газообразного хлорида кремния и таким образом формируются необходимые объемы транспортной пористости.

П р и м е р 1. Из порошка карбида кремния с размером частиц 40 мкм формуют заготовку пластины размером 70 х 70 х 10 мм. Затем заготовку помещают в реактор и обрабатывают в токе природного газа при температуре 780оС в течение 20 ч. В результате термического разложения природного газа в порах заготовки осаждается пироуглерод. Количество пироуглерода составляет 10 г на 100 г карбида кремния.

Затем пластину помещают в вакуумную печь и осуществляют пропитку жидким кремнием при температуре 1600оС в течение 30 мин.

После этого проводят хлорирование при температуре 1000оС. Процесс хлорирования заканчивают, когда масса заготовки перестает уменьшаться. Полученное изделие обладает следующими свойствами: Кажущаяся плотность, г/см3 0,6 Истинная плотность по гелию, г/см3 2,16 Суммарный объем пор, см3/г 0,87 Объем микропор, см3/г 0,54
Объем транспортных пор, см3/г 0,33
Предел прочности на
сжатие, кгс/см2 90
П р и м е р 2. 100 г порошка карбида кремния размером 40 мкм смешивают с 30 г суспензии, состоящей из 40 мас.% сажи ПМ-100,5 мас.% фенолформальдегидной смолы СФО-10А и 55 мас.% этилового спирта. Из полученной шихты формуют заготовку диска диаметром 70 мм и толщиной 10 мм, которую помещают в сушильный шкаф, нагревают до 150оС и выдерживают в течение 3 ч до полного отверждения смолы. Затем заготовку помещают в вакуумную печь и осуществляют пропитку кремнием в течение 30 мин при 1650оС. После этого проводят процесс хлорирования при температуре 1000оС. Процесс хлорирования заканчивают, когда масса заготовки перестает уменьшаться.

Полученное изделие обладает следующими свойствами:
Кажущаяся плотность, г/см3 0,6
Истинная плотность
по гелию, г/см3 2,19
Суммарный объем пор, см3/г 0,85
Объем микропор, см3/г 0,53
Объем транспортных пор, см3/г 0,32
Предел прочности при
сжатии, кгс/см2 85
П р и м е р 3. 100 г порошка карбида кремния размером 40 мкм смешивают с 15 г порошкообразного пироуглерода с размером частиц 1-5 мкм. Из полученной шихты формуют заготовку диска диаметром 28 мм и толщиной 5 мм. Заготовку помещают в вакуумную печь и пропитывают кремнием в течение 30 мин при 1650оС. После этого проводят хлорирование при температуре 1000оС. Процесс хлорирования заканчивают, когда масса заготовки перестает уменьшаться.

Полученное изделие обладает следующими свойствами:
Кажущаяся плотность, г/см3 0,53
Истинная плотность
по гелию, г/см3 2,15
Суммарный объем пор, см3/г 0,80
Объем микропор, см3/г 0,48
Объем транспортных пор, см3/г 0,32
Предел прочности на
сжатие, кгс/см2 75
П р и м е р ы 4-12 осуществляются аналогично примерам 1 и 2. Свойства полученных изделий представлены в таблице.

Кажущуюся плотность определяли методом гидростатического взвешивания по ГОСТ 473.4-81. Истинную плотность измеряли методом газовой пикнометрии на приборе Autopicnometr 1320. Объем микропор определяли на приборе Sorbtomatic 1800. Предел прочности при сжатии измеряли по ГОСТ 473.6-81.

Применение предлагаемого способа получения углеродных микропористых изделий по сравнению с прототипом обеспечивает следующие преимущества: конструкционная прочность компактных углеродных микропористых изделий увеличивается более чем в 3 раза, увеличение объема микропор изделий почти в 2 раза обеспечивает более высокие адсорбционные свойства.

Углеродные микропористые изделия, получаемые по предлагаемому способу, могут найти широкое применение в криогенной технике и медицине.


Формула изобретения

СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНОГО ИЗДЕЛИЯ, включающий формование изделия из карбида кремния и связующего и его термохимическую обработку, отличающийся тем, что в качестве связующего используют пироуглерод или смесь сажи, фенолоформальдегидный смолы и этилового спирта при следующем соотношении компонентов, мас.%:
Сажа - 30 - 50
Фенолоформальдегидная смола - 5 - 10
Этиловый спирт - 40 - 60
при этом связующее используют в количестве 5-50 г на 100 г карбида кремния, после формования осуществляют пропитку изделия жидким кремнием при 1600-1700oС в вакууме, а термохимическую обработку ведут хлором при 900-1100oС.

РИСУНКИ

Рисунок 1, Рисунок 2

MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Дата прекращения действия патента: 02.04.2001

Извещение опубликовано: 10.10.2004        БИ: 28/2004




 

Похожие патенты:

Изобретение относится к области сорбционных материалов широкого спектра применения в медицине, ветеринарии, пищевой промышленности, для очистки сточных вод и газовых выбросов, в химической, биотехнологической промышленности как сорбентов, катализаторов, носителей катализаторов

Изобретение относится к области пористых материалов, адсорбентов, в том числе медицинского назначения, носителей для ферментов

Изобретение относится к области сорбционной техники и может быть использовано в процессах очистки отходящих промышленных газов, а также при разработке промышленных противогазов

Изобретение относится к получению углеродного сорбента

Изобретение относится к области сорбционной техники и может быть использовано для получения хемосорбентов и катализаторов для очистки воздуха и промышленных выбросов, содержащих аммиак и пары органических веществ
Изобретение относится к способам получения углеродных адсорбентов путем карбонизации и активации твердого сырья в вертикальном аппарате шахтного типа при вводе сырья и паровоздушной смеси в верхнюю часть аппарата и водяного пара в нижнюю часть аппарата, причем отвод горючего газа осуществляют между зоной карбонизации и точкой ввода пара в нижнюю часть аппарата. Изобретение относится к химической технологии твердого топлива, в частности, к производству адсорбентов из твердых углеродсодержащих материалов органического происхождения, таких как, например, уголь или древесная щепа

Изобретение относится к способам получения адсорбентов из природных полимеров растительного происхождения - дробленой скорлупы фруктовых косточек

Изобретение относится к технологии получения порошкового фильтрующего материала с адсорбирующими свойствами и может быть использовано при очистке сточных вод и в пищевой промышленности для осветления и продления коллоидной стойкости фруктовых соков и вин

Изобретение относится к физической химии, а конкретнее касается пористых композиционных материалов

Изобретение относится к области получения адсорбентов, используемых в гидрометаллургии благородных металлов для выделения серебра
Изобретение относится к области сорбционной техники и может быть использовано для получения модифицированных активных углей (МАУ), применяемых в водоочистке и водоподготовке, а также в медицинской технике

Изобретение относится к получению дробленого активного угля

Изобретение относится к способам получения углеродных катионообменников, которые могут быть использованы при производстве особо чистых веществ, в медицинской и фармакологической промышленности для производства гемо- и энтерособентов, для очистки биологических жидкостей от ионов тяжелых металлов, других токсичных соединений

Изобретение относится к производству адсорбентов

Изобретение относится к технологии получения сорбентов на основе углеродсодержащего сырья (в частности, бурых углей), которые могут быть использованы в процессах водоподготовки, например, для очистки питьевой воды от органических соединений и окислов железа, а также в гидрометаллургии для извлечения драгоценных и цветных металлов из растворов

Изобретение относится к углеродным сорбционно-активным волокнам на основе вискозного волокна, которое является исходным материалом для изготовления фильтров для очистки сточных вод, а также для выделения и концентрирования металлов в качестве ионнообменных сорбентов
Наверх