Микрозонд

 

Использование: изобретение относится к испытательной технике и может быть использовано для определения микромеханических и эксплуатационных свойств поверхности готовых изделий. Сущность изобретения: микрозонд выполнен из измерительной головки и электронного блока управления и обработки данных. Измерительная головка содержит индентор, систему нагружения и царапания, измерительные датчики, соединенные с электронным блоком управления и обработки данных. Технический результат: возможность измерения микромеханических и эксплуатационных свойств готовых изделий неразрушающим способом, автоматизация испытаний, расширение функциональных возможностей микрозонда за счет визуального наблюдения самого процесса вдавливания и царапания. 1 з.п. ф-лы, 1 ил.

Изобретение относится к испытательной технике, а более точно касается устройств по определению микромеханических и эксплуатационных свойств поверхности материалов без ее разрушения.

Известен микрозонд, использующий метод вдавливания при оценке конструктивной целостности структур, содержащий головку, перемещающуюся в Х-Y направлениях в плоскости, параллельной поверхности структуры; зажим для съемного жесткого соединения головки с поверхностью структуры; приспособление, соединенное с головкой и зажимом для создания нагрузки; тензодатчик, установленный на головке, держатель индектора, индентор, датчик смещений, блок сбора данных.

Недостатком данного микрозонда является: невозможность проведения испытаний на готовой детали без ее разрушения; отсутствие процесса царапания и как следствие отсутствие информации о микромеханических и эксплуатационных свойствах изделия и его обрабатываемости.

Известен оптико-акустический микротвердомер состоящий из магнитострикционного стержня, размещенного в отверстии призмы полного внутреннего отражения и в отверстии длиннофокусного зеркально-линзового объектива.

В данном микротвердомере использовано оптическое наблюдение места вдавливания на поверхности материала, а величину микротвердости определяют по затуханию акустических колебаний штока с индентором, вершина которого совмещена с фокальной плоскостью объектива.

К недостаткам известного микротвердомера можно отнести: невозможность проведения испытаний на готовой детали; отсутствие процесса царапания и, следовательно, отсутствует информация об эксплуатационных свойствах изделия и его обрабатываемости.

В основу изобретения поставлена задача создания устройства с оптическим наблюдением поведения материала непосредственно в процессе вдавливания и царапания с одновременным автоматическим съемом сигналов с последующей обработкой для определения микромеханических и эксплуатационных свойств этих материалов, а также автоматизации процесса испытаний.

Поставленная задача решается тем, что предлагаемый микрозонд содержит центральный полый шток, который жестко закреплен на упругих пластинах, благодаря чему обеспечивается строгая вертикальность перемещения штока и связанного с ним индентора, что дает возможность получения отпечатков и царапин правильной формы. Внутри штока размещен волоконно-оптический световод, к фронтальной линзе которого прикреплен индентор так, что его вершина находится в фокальной плоскости объектива световода, для получения резкого изображения поверхности детали. Индентор соединен токосъемником с электронным блоком, позволяющим получать информацию об электрических явлениях, происходящих при царапании. Глубина внедрения индентора в поверхность материала определяется оптопарой с открытым оптическим каналом, что исключает влияние измерительного усилия датчика на величину вертикальной нагрузки. Оптопара расположена в нижней части измерительной головки, а ее излучение контактирует с поверхностью контролируемой детали. Верхняя часть измерительной головки может перемещаться относительно нижней с помощью микровинта и на ней закреплена бинокулярная насадка, в одном из оптических каналов которой находится фотоприемник, что позволяет регистрировать площадь контакта индентора с изделием, что расширяет функциональные возможности устройства. Сигналы с измерительных датчиков, установленных в измерительной головке, поступают в электронный блок обработки; предусмотрена также запись сигнала на дискету для последующей их обработки на компьютере.

На чертеже представлена принципиальная схема микрозонда.

Устройство состоит из измерительной головки и электронного блока управления и обработки данных. Измерительная головка содержит корпус 1, центральный полый шток 2, на нижней части которого закреплены плоскопараллельные внутренние 3 и наружные 4 пластины для горизонтального перемещения индентора.

Внутри центрального штока расположен волоконнооптический световод 5, к фронтальной линзе которого прикреплен индентор 6, соединенный с токосъемником 7. К штоку через изолятор прикреплен пъезоэлемент 8 из биморфного пъезоматериала, а на наружных 4 и внутренних 3 пластинах приклеены интегральные тензопреобразователи 9 и 10. Центральный шток жестко защемлен между упругими пластинами 11 с наклеенным на них датчиком 12 вертикальной нагрузки.

Внутри корпуса размещен электромагнит 13 и упругие пластины 14, на которых закреплен якорь 15. На нижнем конце упругих пластин 3 и 4 установлена оптопара 16 с открытым оптическим каналом и бинокулярная насадка 17 с фотоприемником 18. Верхняя часть измерительной головки для фокусировки резкости может перемещаться относительно нижней с помощью микровинта 19, и вся она в целом соединена шиной с электронным блоком управления и обработки данных, который состоит из измерительных мостов с усилителями 20, системы 21 автоматики, вычислительного устройства 22, контрольно-регистрирующего блока 23, аналого-цифрового преобразователя 24 и дисковода 25.

Работа микрозонда осуществляется следующим образом.

Измерительная головка микрозонда жестко закрепляется на поверхности контролируемой детали и с помощью микровинта 19 фокусируют объектив волоконно-оптического световода 5 на поверхность изделия и выбирают место испытаний и этим же микровинтом подводят индентор 6 до касания с поверхностью детали. Момент контакта регистрируется датчиком вертикальной нагрузки 12, после этого оптопару 16 с открытым оптическим каналом устанавливают в нулевое положение и балансируют фотоприемник 18.

Затем прикладывают основную испытательную нагрузку путем подачи на электромагнит 13 с системы автоматики 21 линейно развертывающегося во времени напряжения до заданной величины, вертикальной нагрузки, которая регистрируется датчиком 12. Сигналы с датчиков вертикальной нагрузки, глубина отпечатка (оптопара) 16 или площади контакта (фотоприемник) 18 поступают через измерительные мосты с усилителями 20 на вычислительное устройство 22 и контрольно-регистрирующий блок 23. Одновременно с этим те же сигналы через аналого-цифровой преобразователь 24 могут быть записаны на дискету дисководом 25 с целью дальнейшей расширенной обработки на компьютере.

При царапании поверхности детали на пьезоэлемент 8 с системой 21 автоматики подается линейно развертывающееся во времени напряжение, что приводит к прогибу пьезопластины и жестко с ней связанных наружных плоскопараллельных пластин 4 с наклеенным на них интегральным тензопреобразователем 10.

Перемещение наружных пластин 4 приводит к горизонтальному смещению внутренних пластин 3 с наклеенным на них интегральным тензопреобразователем 9, определяющим величину горизонтальной силы и, следовательно, индентор царапает поверхность детали. Сигналы с интегральных тензопреобразователей 9 и 10 поступают в электронные блоки 20, 22 и 23 либо через аналого-цифровой преобразователь 24 для записи на дискету. Все операции могут выполняться в автоматическом режиме.

Изобретение может применяться при автоматизированном контроле и определении микромеханических и эксплуатационных свойств готовых изделий в металлообрабатывающей, машиностроительной, металлургической и электронной промышленности.

Формула изобретения

1. МИКРОЗОНД, содержащий корпус, размещенные в корпусе нагружатель и соосные стержень, индентор и средства оптической регистрации площади контакта и блок обработки данных с датчиками измерения усилий и размеров отпечатка, при этом вершина индентора совмещена с фокусом средства оптической регистрации, отличающийся тем, что он снабжен двумя коаксиально установленными и охватывающими стержень стаканами с размещенными на боковой поверхности каждого стакана тензопреобразователями, пьезоэлементом, размещенным на наружной поверхности внешнего стакана, и оптопарой с открытым оптическим каналом, обращенным в сторону испытуемого изделия, стержень выполнен полым, а средство оптической регистрации - в виде волоконно-оптического световода, установленного в полости стержня коаксиально ему.

2. Микрозонд по п.1, отличающийся тем, что он содержит бинокулярную насадку с фотоприемником, выход которой связан с входом блока обработки данных.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к контрольно-измерительной технике и может найти применение в металлургической, пищевой химической и других отраслях промышленности, где производственный процесс направлен на изготовление прессованных изделий из сыпучих материалов

Изобретение относится к испытательной технике и может использоваться при обнаружении затонувшей древесины

Изобретение относится к испытательной технике и может быть использовано, например, для определения вязкости материала корпусов атомных реакторов

Изобретение относится к испытательной технике, а именно к приборам для измерения твердости материалов

Изобретение относится к технике измерения физических величин, в частности к конструкции трехинденторного измерителя твердости резины и может быть использовано в резино-технической, шинной промышленности и промышленности пластических масс

Изобретение относится к устройствам для исследования грунтов при инженерных изысканиях в строительстве

Изобретение относится к определению твердости резиновых образцов и резинотехнических деталей

Изобретение относится к исследованию свойств материалов, предназначено для определения физико-механических характеристик поверхности слоев материалов и деталей машин и обеспечивает расширение эксплуатационных возможностей процесса определения физико-механических характеристик

Изобретение относится к исследованию прочностных свойств твердых материалов путем приложения к ним механических усилий, в частности при вдавливании в испытуемый материал наконечников испытательных устройств, находящихся под постоянной нагрузкой

Изобретение относится к области физических исследований, а именно к технике механических испытаний материалов на упругопластическую деформацию при изучении свойств металлов, работающих в динамическом режиме, например узлов трения и подвижных сопряжений машин и оборудования транспортной техники, в том числе вагонов, локомотивов, путевых дорожных машин, деталей верхнего строения пути

Изобретение относится к измерительной технике, а именно к приборам для определения прочностных свойств тонкостенных объектов

Изобретение относится к области измерений и предназначено, в частности, для исследования механических свойств материалов

Изобретение относится к средствам испытания материалов, в частности листового анизотропного материала

Изобретение относится к области измерений и испытаний деформируемых тел, в частности грунтов и строительных материалов

Изобретение относится к области определения физико-механических характеристик материалов, в частности к микромеханическим испытаниям материалов с покрытиями и инструментальных материалов
Наверх