Способ получения ультрафиолетового преобразователя

 

Использование: в оптоэлектронике, в частности в устройствах, преобразующих лучистую энергию в электрическую, в приборах для измерения освещенности, интенсивности излучения, дозы ультрафиолетового облучения, и в качестве датчиков для определения концентрации озона в атмосферном слое Земли. Сущность изобретения: способ заключается в нанесении на подложку из неорганического полупроводника омического тыльного электрода, нанесении на другую поверхность данной подложки органического полупроводника металлфталоцианина, легировании органического полупроводника металлфталоцианина кислородом и нанесении на легированный слой верхнего электрода, пропускающего не менее 10% падающего излучения. 4 ил.

Изобретение относится к оптоэлектронике, в частности к устройствам, преобразующим лучистую энергию в электрическую, и может быть использовано в приборах для измерения освещенности, интенсивности излучения, дозы ультрафиолетового облучения и в качестве датчика для определения концентрации озона в атмосферном слое Земли.

Известен фотоприемник на основе карбида кремния для УФ-диапазона спектра [1] В работе использован карбид кремния с шириной запрещенной зоны больше 3 эВ. При изготовлении фотоприемника учтены высокие коэффициенты поглощения K104 см-1 материала в УФ-диапазоне, поэтому вся область поглощения меньше или порядка 10-4 см. Именно такие толщины и составлял барьер Шотки.

Недостатком таких фотоприемников для УФ-диапазона является очень высокая стоимость карбида кремния.

Известен способ изготовления тонкопленочного фотоэлектрического преобразователя с р-i -n структурой на основе =Si H, который обладает фотоэлектрической чувствительностью в области 200-400 нм [2] Этот способ изготовления заключается в следующем: 1. На стеклянную подложку наносят омический тыльный электрод, например, из диоксида олова SnO2.

2. На проводящий слой из SnO2 наносят тонкий легированный слой р- или n-типа осаждением = Si H из газообразной фазы.

3. На легированный слой наносят осаждением из газообразной фазы толстый слой из нелегированного = Si H.

4. На нелегированный слой наносят осаждением из газообразной фазы второй легированный слой р- или n-типа из = Si H.

5. На второй легированный слой Si H наносят верхний электрод в виде проводящей пленки из SnO2.

6. На верхний электрод наносят металлический коллектор.

7. На верхнем электроде размещают кварцевое стекло.

8. Кварцевое стекло покрывают антиотражающим покрытием из CaF2 или MgF2.

Однако в полученных по такому способу ультрафиолетовых фотоэлектрических преобразователях имеются существенные недостатки: невозможность получения спектральной фоточувствительности в широком интервале от 200 до 1000 нм, невозможность получения высокой фоточувствительности по фото-ЭДС, сложность технологии изготовления.

Цель изобретения повышение фоточувствительности по фото-ЭДС.

Для этого в способе получения ультрафиолетового преобразователя, включающем нанесение на полупроводниковую подложку фоточувствительного слоя, его легирование и нанесение на противоположные стороны электродов, в качестве материала подложки используют неорганический полупроводник, а фоточувствительный слой наносят из органического полупроводникового материала металл фталоцианина.

На фиг. 1 изображена структурная формула органического полупроводникового металлфталоцианина; на фиг. 2 схема фотоэлектрического преобразователя; на фиг. 3 спектральная фоточувствительность фотопреобразователя; на фиг. 4 спектр поглощения фоточувствительного слоя.

Новым в предлагаемом способе по сравнению с прототипом является нанесение слоя органического полупроводника металлфталоцианина на подложку из неорганического полупроводника, что позволяет расширить спектральную фоточувствительность фотопреобразователя в интервале от 200 до 1100 нм, повысить фоточувствительность в максимуме (фиг. 3) и более чем вдвое сократить число технологических операций.

Способ осуществляют следующим образом.

На протравленную монокристаллическую пластинку 1 наносят в вакууме (но хуже 1,3310-3 Па) омический электрод 2 при одновременном напылении золота и германия или из серебра (лучше из Ag).

На противоположную поверхность пластины GaAs термическим испарением в вакууме наносят тонкий ( d20 нм) слой 3 фталоцианина меди.

Слой CuPc подвергают легированию кислородом атмосферы воздуха или очищенным кислородом.

На легированный слой CuPc наносят термическим испарением в вакууме тонкий слой 4 Ag, к слоям 2 и 4 формируют выводы 5 и 6. Коэффициент пропускания электрода из Ag составляет 10% В процессе легирования слоя CuPc акцепторной примесью, например кислородом, создается примесный уровень, отстоящий от вершины валентной зоны на 0,6 эВ, и на границе между пластинкой из GaAs и слоем CuPc образуется гетеропереход, состоящий из двух последовательно соединенных барьеров Шотки. Глубина залегания барьера в GaAs составляет 50 нм, а в слое CuPc 20 нм. Так как толщина слоя CuPc соответствует ширине барьера в нем, то возникает высокая фоточувствительность как в видимой области, так и в УФ-области.

Спектральная фоточувствительность фотопреобразователя представлена на фиг. 4. В области 850-1000 нм генерация носителей заряда происходит в барьере Шотки слоя CuPc, а в области 450-500 нм носители заряда генерируются в области объемного заряда (барьера Шотки) пластинки GaAs. В области 500-850 нм генерация носителей происходит как в р-n-переходе слоя CuPc, так и в GaAs.

В УФ-области, как видно из фиг. 4, кванты света поглощаются только слоем CuPc (кривая 7), поэтому генерация носителей заряда происходит в р-n-переходе этого слоя. Кривые 8 и 9 другие металлфталоцианины.

Спектральная фоточувствительность изготовленного предлагаемым способом фотопреобразователя лежит в интервале от 200 до 1100 нм, т. е. перекрывает УФ-область, видимую и ближнюю инфракрасную и, таким образом, значительно превосходит ширину спектральной фоточувствительности известных решений. Максимальная квантовая эффективность при = 800 нм соответствует 86% Изготовленный предлагаемым способом фотопреобразователь обладает высокой фоточувствительностью по фото-ЭДС. Предельная мощность падающего излучения, которую способен обнаружить фотоприемник, составляет 10-10 Вт.

Формула изобретения

СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАФИОЛЕТОВОГО ПРЕОБРАЗОВАТЕЛЯ, включающий нанесение на подложку фоточувствительного слоя, его легирование и нанесение на противоположные стороны электродов, отличающийся тем, что в качестве материала подложки используют неорганический полупроводник, а фоточувствительный слой наносят из органического полупроводникового материала металлфталоцианина.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4



 

Похожие патенты:

Изобретение относится к технике прямого преобразования солнечной энергии в электрическую и может быть использовано в фотоэлектрических модулях электрической мощностью от десятков ватт до нескольких киловатт и при их изготовлении

Изобретение относится к оптоэлектронике и может быть использовано при изготовлении полупроводниковых приемников ИК-излучения

Изобретение относится к оптоэлектронике и может быть использовано для преобразования солнечной энергии

Изобретение относится к изготовлению полупроводниковых фотоэлектрических приборов на основе диффузии легирующей примеси с последующей механической обработкой и может бать использовано для производства фотодетекторов в ИК-области и видимой области спектра излучения

Изобретение относится к полупроводниковой технике и может быть использовано в качестве активного элемента приемника ИК-излучения, работающего в условиях радиационного воздействия

Изобретение относится к области изготовления оптоэлектронных приборов, а именно кремниевых фотопреобразователей (ФП) с неоднородной глубиной залегания p-n-перехода

Изобретение относится к области изготовления оптоэлектронных приборов, в частности кремниевых фотопреобразователей (ФП) с p-n-переходом

Изобретение относится к технологии изготовления полупроводниковых приборов, в частности к способам изготовления солнечных элементов (СЭ)

Изобретение относится к приборам, состоящим из нескольких полупроводниковых компонентов, чувствительных к различным видам фотонного излучения, от оптического до гамма-излучения, преобразующих энергию этих излучений в электрическую энергию

Изобретение относится к способу изготовления солнечного элемента, а также солнечному элементу, изготовленному этим способом

Изобретение относится к электронной технике, а именно к технологии изготовления полупроводниковых фотопреобразователей (ФП)
Изобретение относится к полупроводниковой технике, а именно к технологии изготовления полупроводниковых фотопреобразователей (ФП)

Изобретение относится к полупроводниковой технике, а именно к технологии изготовления полупроводниковых фотопреобразователей (ФП)

Изобретение относится к способу и устройству для изготовления фотогальванических (фотовольтаических) приборов, а также касается получающегося в результате изделия для преобразования света в электричество

Изобретение относится к гелиоэнергетике, в частности к солнечным фотоэлектрическим модулям с концентраторами солнечного излучения для получения тепла и электричества
Наверх