Способ определения параметров двухфазных потоков сплошных сред и устройство для его осуществления

 

Использование: в измерительной технике, в способах и устройствах для измерения непосредственно в транспортных магистралях и трубопроводах характеристик потоков газов, жидкостей, их двухфазных или многокомпанентных смесей, используемых или возникающих в процессе работы агрегатов в тепловой и ядерной энергетике, нефтехимии, криогенной технике, технология переработки и потребления природного и сниженного газов, а также в других технологиях, где применяются потоки поляризуемых сплошныйх сред. Сущность изобретения: производят непрерывные замеры температуры, давления, плотности и расхода в потоках сплошных сред, в заданном участке движения потока с неизвестным фазовым составом создают последовательно расположенные зоны заданной геометрии с концентрированными в них сверхвысокочастотными (СВЧ) электромагнитными полями с параллельным и/или поперечным к направлению движения среды векторами электрического поля,измеряют в этих полях резонансные частоты, зависящие от фазового состояния движущихся в них сред, определяют по значениям этих частот величены продольной и поперечной диэлектрической проницаемости потока, по которым определяют объемное содержание компонента с низкой плотностью и компонента с высокой плотностью, определяют по значению низкой плотности эффективные диэлектрическую проницаемость, плотность и энтальпию потока измеряемой среды, измеряют в зонах с концентрированными СВЧ электромагнитными полями авто- или взаимокорреляционные функции резонансных частот, возникающих в движущейся измеряемой среде, определяют по этим функциям совместно с измерением эффективной плотности массовый расход измеряемой среды, а совместно с измерением энтальпии величину тепла , аккумулированного в потоке. 2 с.п. ф-лы, 10 ил.

Изобретение относится к измерительной технике, а точнее к способам и устройствам для измерения непосредственно в транспортных магистралях и трубопроводах характеристик потоков газов, жидкостей, их двухфазных или многокомпонентных смесей, используемых или возникающих в процессе работы агрегатов в тепловой и ядерной энергетике, нефтехимии, криогенной технике, технологиях переработки и потребления природного и сжиженного газов, а также в других технологиях, где применяются потоки поляризуемых сплошных сред.

Для обоснованного управления и контроля за такими потоками необходимо знание различных характеристик течения, в том числе плотности среды в случае двухфазных или многокомпонентных потоков, их массового расхода, аккумулируемого в двух или многофазном потоке тепла, и других характеристик, измерение которых в настоящее время освоено и используется лишь для однофазных сред и практически не поддается определению в случае, если движущаяся среда многофазная.

Известен способ определения плотности сплошной среды на основе измерения его диэлектрической проницаемости эф. Такие измерения проводятся путем помещения исследуемой многокомпонентной среды в электрическое поле, емкость которого изменяется в зависимости от концентрации компонентов измеряемой среды. Например, пусть V1 объем одного из компонентов исследуемой среды с диэлектрической проницаемостью 1, V2 объем другого компонента с диэлектрической проницаемостью 2, тогда их объемная концентрация выражается с помощью соотношений 1= ; (1) 2= 1-1, (2) а эффективная диэлектрическая проницаемость эф 1 1 + 2 2 1 1 + ( 1 1 ) 2 2 1 ( 2 1 ) (3) Известна также однозначная связь диэлектрической проницаемости с плотностью поляризуемых сред, определяемая для неполярных сред уравнением Клазиуса -Сассотти (Сканави Г.И. Физика диэлектриков, область слабых полей) и для полярных сред, например для воды и водяного пара, международным уравнением (Мартынова О. И. Теплоэнергетика, 1977). Способ устанавливает посредством этих зависимостей меру изменения диэлектрических проницаемостей в средах с разными 1 и 2 и позволяет в ряде частных случаев определить эффективную плотность среды, помещаемой в электрическое поле с электрической емкостью С.

Определение плотности среды позволяет при известных давлении и температуре восстановить основные теплофизические характеристики вещества, помещенного в электрическое поле, а размещение зон с концентрированными электрическими полями одной вслед за другой вдоль по направлению перемещения среды позволяет определять ее массовый расход (см. например, Кремлевский П.П. Измерение расхода многофазных потоков, Л. Машиностроение, 1982).

Принципиальным недостатком способа является неоднозначность определения плотности в двухфазных или многокомпонентных средах в связи с зависимостью емкости электрического поля или, что то же самое, диэлектрической проницаемости объема среды от пространственного распределения первой и второй фаз. По этой причине при одной и той же плотности среды эф и при одной и той же концентрации фаз 1 и 2величина эф может принимать различные значения. При этом погрешность в определении эф по измененному значению максимальна для полярных сред.

Известны устройства для измерения расхода и плотности различных сред. Например, известно устройство для измерения расхода и плотности угольно-воздушной среды, содержащее первичный преобразователь в виде двух электроемкостных элементов, установленных по потоку друг за другом на фиксированном расстоянии. Емкостные элементы представляют собой алюминиевые обкладки на внешней поверхности керамической трубы, внутри которой движется угольно-воздушная смесь. Каждый емкостный элемент включен в контур генератора высокой частоты. Выход генератора через частотно-аналоговый преобразователь подается в корреляционную схему измерения расхода (Корреляционный расходомер. Nacagava Toshio, Madsatshita Shigetada Keiso instorumentation, 1982, 25, N 11, с. 39-42).

Недостатком этого устройства является высокая погрешность изменения скорости в воздушно-угольном потоке из-за указанных недостатков способа и существенной неоднородности электрического поля в электроемкостных элементах описанной конструкции. Помимо этого, опыт указывает на низкую чувствительность таких элементов при их использовании для измерения расхода.

Известны способ и устройство для определения параметров двухфазных потоков сплошных сред, основанные на непрерывном измерении параметров электромагнитного поля в потоке газа, жидкостей (авт.св. СССР N 1719973, кл. G 01 N 22/00, 1992).

Целью изобретения является создание универсального способа и ряда устройств для измерения на его основе характеристик потоков поляризуемых газов, жидкостей, их двухфазных или многокомпонентных смесей. Способ и устройство по изобретению обладают повышенной точностью, простотой и надежностью, при этом устройство устанавливается непосредственно в транспортные магистрали или любые другие коммуникации, где движется измеряемая среда, и не загромождает их живое сечение.

Цель достигается тем, что динамический контроль и управление процессами энергообмена и энергопреобразования в движущихся сплошных поляризуемых средах, основанные на непрерывном измерении температуры, давления, плотности и расхода в потоках газов, жидкостей, их двухфазных и многокомпонентных смесях с неизвестным фазовым составом и гомогенно или негомогенно распределенными компонентами с относительно низкой (индекс 1) и относительно высокой (индекс 2) плотностями, осуществляют путем создания вдоль по потоку измеряемой среды зон с концентрированными в них сверхвысокочастотными (СВЧ) электромагнитными полями, с параллельными или поперечными к направлению движения среды векторами электрического поля, возбуждают в этих зонах СВЧ-колебания электромагнитного поля и измеряют резонансные частоты fр этих колебаний в потоке измеряемой поляризуемой среды, по измеренным значениям частот определяют величины продольной и поперечной диэлектрических проницаемостей потока движущейся среды согласно соотношениям = K+(2-1) ; (4) = K , (5) где 1 и 2 табличные значения диэлектрических проницаемостей компонентов измеряемой среды с низкой и высокой плотностями, соответствующими измеренным в потоке температуре и давлению, Ки К- передаточные функции электромагнитных полей, определяемые в процессе заполнения измеряемой средой зон с концентрированными СВЧ-полями; f/fp- резонансные частоты сверхчастотных колебаний в измеряемой среде; f, f, f1 и f2 резонансные частоты СВЧ-колебаний продольного и поперечного электрических полей, возникающие в случае заполнения зон с концентрированным электромагнитным полем компонентом измеряемой среды, обладающим низкой плотностью, и компонентом измеряемой среды, обладающим высокой плотностью, определяют по величинам и объемное содержание -компоненты с низкой плотностью и объемное содержание (1- )-компоненты с высокой плотностью, используя соотношения , (6) где ; * , а коэффициент А определяют из равенства A , используя значение , определяют эффективные диэлектрическую проницаемость, плотность и энтальпию (индекс эф) в потоке измеряемой среды по соотношениям эф B+, (7) где B (2-3)2+(3-1)1} эф 1 + ( 1 ) 2 (8)
iэф= i+(1-) i2, (9) измеряют авто- или взаимокорреляционные функции резонансных частот, возникающих в последовательно расположенных зонах со сверхчастотными магнитными полями при перемещении в этих зонах потока измеряемой среды, определяют по этим функциям массовый расход измеряемой среды, обеспечивающий определение тепла, аккумулированного в потоке, степень равновесности фаз в нем и осуществляют на основании полученных данных обоснованные контроль за процессами энергообмена и энергопреобразования и управление ими. Помимо этого, в резонаторах создают последовательно расположенные зоны с поперечными и продольными относительно направления движения среды электрическими полями, измеряют в этих зонах значения и и автокорреляционную функцию и по ее параметрам определяют расход измеряемой среды. Аналогично этому в потоке создают последовательно расположенные зоны с произвольно направленными электрическими полями, измеряют в этих зонах автокорреляционную функцию между резонансными частотами и по ее параметрам определяют расход измеряемой среды.

Этот способ позволяет также определить степень равновесия в движущейся многофазной среде между температурой, давлением и эффективной плотностью путем сравнения измеренных значений диэлектрической проницаемости эф, плотности эф и энтальпии iэф с их значениями на линии насыщения в измеряемой среде при тех же температуре и давлении. Разность значений этих параметров определяет степень неравновесности фаз в среде.

Предлагаемый способ отличается от известных тем, что на обтекаемых границах зон, где возбуждают продольные или поперечные к направлению потока СВЧ электромагнитные поля, частицам измеряемой среды придают траектории движения, обеспечивающие на обтекаемых границах самоорганизацию смерчеобразных струй, отсасывающих приповерхностную массу измеряемой среды в ядро ее течения в резонаторе, чем предотвращают осаждение на граничных поверхностях различных примесей из потока и снижают на этих поверхностях толщину пленок компонентов измеряемой среды. Кроме этого, возможность определения эффективной плотности в потоках при энергообмене и энергопреобразовании обеспечивает контроль параметров среды и управления ее движением в координатах плотность-давление или плотность-температура.

Обоснованием правомерности предлагаемого способа являются следующие соображения. Рассмотрим вначале смесь двух компонентов, находящуюся в статическом состоянии (состояние покоя). Пусть эта смесь состоит из пара и жидкости, обладающих диэлектрическими проницаемостями при заданных температуре и давлении 1 и 2 соответственно. При этом всегда 2 > > 1 при любых паросодержащих в интервале 0 1. Предположим вначале, что смесь полностью расслоена, т. е. имеется четкая граница, отделяющая объем пара V1 от объема жидкости V2. В этом случае электрические емкости этих объемов образуют либо последовательное, либо параллельное соединение в объеме конденсатора в зависимости от того, как в электрическом поле ориентирована граница между объемами V1 и V2. В случае границы между объемами V1 и V2, ориентированной параллельно направлению электрического поля, обозначим диэлектрическую проницаемость такой полностью расслоенной среды через (фиг.1). Тогда из соотношений работы
= 1+(1-)2. (10)
В случае границы между объемами V1 и V2, ориентированной перпендикулярно направлению электрического поля в конденсаторе, обозначим диэлектрическую проницаемость в такой полностью расслоенной среде через (фиг.2). Тогда из соотношений работы
см .(11)
Если граница между объемами имеет нечеткую форму и объемы паровой и жидкой фаз распределены произвольно, диэлектрическая проницаемость такой смеси см ограничена известным неравенством Винера:
см см.(12)
На фиг.3 для случая 2 81 и 1 1,0006 представлены вычисленные значения (крестики) и см (точки) в зависимости от паросодержания 0.1. Эти значения совпадают при 0 и 1, а в промежутке различаются между собой, охватывая область возможных значений см в соответствии с неравенством Винера.

В интервале значений от нуля до единицы (0 1) измеренная величина см зависит не только от паросодержания, но и от пространственного распределения жидкой и паровой фаз.

Для статически однородного распределения паровой или жидкой фазы в резонаторе, т.е. при распределении, когда для любых наперед выбранных элементарных объемов, малых по сравнению с объемом резонатора, значение *см выражается одной и той же величиной в пределах статического допуска.

Из известных соотношений работы для статически однородной смеси ее диэлектрическая проницаемость однозначна вычисляется из соотношения Максвелла-Одолевского:
* B+ , (13) где
B (2-3)2+(3-1)1}
Эти значения * однозначно располагаются между значениями диэлектрической проницаемости полностью расслоенных смесей и см
В реальных условиях на поток, как правило, накладываются дополнительные возмущения, которые нарушают расслоенную структуру течения и могут вызывать нестационарные условия в зоне измерений, при которых и не равны нулю. Это обстоятельство приводит к требованию, чтобы за время пребывания потока в резонаторе его стационарность сохранилась, т.е. источники нагрева должны быть удалены от зоны измерения настолько, чтобы температура и давление в фазах 1 и 2 выравнивались и поток можно было считать равновесным. В этом случае в диаграмме состояний пар жидкость можно однозначно определять величины 1 и 2, пользуясь кривой насыщения. С другйо стороны, измерение температуры Т и давления Р в протекающей среде позволяет при одновременном измерении ее диэлектрической проницаемости устанавливать степень равновесности среды. Это отличает измерение в потоке от измерений в статистике и приводит к значениям диэлектрической проницаемости в емкостном измерителе с параллельным () электрическим полем - а с помощью емкостного измерителя с перпендикулярным () электрическим полем . Эти величины отличаются от и , определяемых соотношениями (10) и (11) полностью расслоенных жидкости и пара, зависящих от в статике.

Рассмотрим потоки, для которых стационарность в указанном смысле сохраняется за время t где l длина измерительного участка, составляющая, как правило, величину 0,1 м; V скорость потока в резонаторе, составляющая, как правило, величину V 1 м/с. Другими словами поток должен сохранять стационарность за времена t 0,1 с.

Примем к рассмотрению трехслойную модель течения в резонаторе:
слой чистого пара с объемной долей ;
слой чистой жидкости с объемной долей ;
слой статистически однородной парожидкостной смеси с объемной долей , где и объемные доли однородно перемешанных жидкостей и паровой фаз; V полный объем смеси в резонаторе V V1 + V2. Такая модель представляется практически универсальной, ибо в объеме парожидкостной смеси всегда есть участки чистой жидкости и чистого пара, разделенные границей их смеси.

Введем определение паросодержания перемешанной части потока
= , (14) которое аналогично паросодержанию смеси, определенному соотношением (1), но относится к зоне течения, где пар и жидкость перемешаны. Пользуясь этим определением, а также соотношениями (11), (12) и (13), причем в выражении (13) заменено на ', с учетом изложенного можно записать
= 1+(1-)2+ (*1-1)+ (*1-2);
1 + + + . (15) Из выражения (14) получим
, (16) тогда
)' ((17)
Приводимая система двух уравнений содержит три неизвестных и '. Величины 2, 1определяются по диаграмме состояния для измеренных температуры Т и давления Р среды, а величины и измеряют с помощью указанных емкостных датчиков. Решение системы (17) возможно только в том случае, если число неизвестных уменьшается до двух и становится равным числу уравнений. Такая процедура может быть выполнена, если произвести анализ этой системы. Зададимся для примера измерением жидкости, содержащей пар в качестве второй фазы. Пусть 1 1,0006; 2 81. Зададимся всевозможными значениями и в интервалах 0 1 и 0 1, 0. На фиг.3 для случая 0,5 крестиками представлены результаты вычисления а точками , в зависимости от ' и . В верхней части фиг.4 крестики соединяют значения с равными , а точки в нижней части значения при равных величинах . Из фиг.4 следует, что все линии начинаются при значении ' 1, т.е. V2 0 по определению (см. соотношение 17), когда течение полностью расслоено, а величины = и = максимально отличаются друг от друга. Из всего многообразия вариантов смеси рассмотрим случай, при котором . Линии на фиг.4, характеризующие такой режим, с уменьшением величины ' сближаются и смыкаются в точке, где - = * ' 0,5. Легко видеть, что замыкающие линии охватывают и ограничивают некоторую зону, заштрихованную на фиг.4. Внутри этой зоны ни при каких комбинациях фаз в стационарном, в указанном смысле, потоке не могут находиться значения и . Остальные линии проходят вне замыкающих кривых и сближаются с уменьшением '. Незамыкающиеся линии и оканчиваются, как только величина при заданной величине становится равной Эти окончания незамыкающихся линий ограничивают вторую запрещенную зону, также заштрихованную на фиг.4. Из рассмотрения фиг.4 и дальнейшего анализа системы (17) следует, что в стационарных потоках всегда выполняется соотношение Винера: > * , а равенство этих величин = * достигается только тогда, когда ' Благодаря наличию первой и второй запрещенных зон, выполнению неравенства Винера для стационарных потоков, а также тому, что линии и пространственно разнесены и представлены непересекающимися кривыми, появляется возможность спроектировать значения и на замыкающиеся линии, где т.е. не потерять информацию об истинном паросодержании . При этом ' принимает значения ' , 1. Так как на замыкающихся линиях справедливо соотношение ,то при этом отображенные на замыкающиеся линии значения ' превращаются в модельно определенные значения , равные , изменяющиеся в интервале 1. Такое модельное приближение при любой комбинации жидкой и паровой фаз в стационарном потоке позволяет точно определить искомую величину истинного паросодержания . В этом легко убедиться, подставив в систему уравнений (17) значения и ' . Подобная подстановка позволяет однозначно определить искомые и , преобразовав эту систему уравнений в следующий алгоритм:
* A
(18) и далее, пользуясь соотношениями (18) или данными работы, получаем
см 1 + ( 1 ) 2;
iсм= i1+(1-) i2, где 1 2 1 2, i1, i2 известны из диаграммы состояния смеси для измеренных температуры Т и давления Р в потоке.

Изложенные соображения создают необходимые и достаточные условия определения с помощью предлагаемого способа основных характерик теплоносителей непосредственно в магистралях энергетических или технологических установок. В подтверждение этого укажем, что в период 1982-1989 г. в ИАЭ им. И.В.Курчатова (г.Москва) произведены многочисленные исследования временных вариаций величин см при различных режимах двухфазного потока гелия, охлаждавшего сверхпроводящие обмотки блоков магнита установки Т-15. Режимы течения отличались уровнем теплопритоков из обмотки в систему охлаждения и зависели от уровня электрического тока в ней. В зоне измерения характеристик гелия наблюдались вариации плотности, типичные для теплоэнергетических объектов. Период этих вариаций, отмеченный по измерениям значений см, изменялся в диапазоне 0,1< t< 300 с. Характерные времена вариаций диэлектрической проницаемости не превышали величины
0,1% 20%
Доля изменения см, приходящаяся на отрезок времени, равный t составляет 110-5% т.е. ничтожно мала по сравнению с .

Таким образом, в емкостном измерителе реальный нестационарный поток теплоносителя воспринимается стационарным и к нему применимы все соотношения, определяющие предлагаемый способ. При этом нестационарность потока воспринимается как временная вариация результатов измерений. Легко убедиться, что в общем случае нестационарного потока, когда в нем существуют перемешанные и не перемешанные области течения, емкостный измеритель всегда воспринимает поток стационарным. Действительно пусть в момент времени t поток состоит из стационарных слоев, а вслед за этим в нем появляются зоны, в которых см больше или меньше предыдущего значения. Эти зоны перемещаются вмете с потоком и воспринимаются как скачок диэлектрической проницаемости на фоне ее стационарного значения для остальных слоев. Дальнейшие рассуждения не отличаются от рассмотренного ранее экспериментального случая. Исключения могут составлять отдельные отрезки времени t, когда через емкостный измеритель проходит фронт очень резкой неоднородности плотности в потоке, например большой паровой пузырь. В этом случае одно измерение длительностью 10-1 с отчетливо фиксирует прохождение пузыря.

Потоки с продольной и поперечной нестационарностью, когда при 0 имеем 0 и 0 исключение погрешности измерений обеспечивается двумя обстоятельствами: величина вариации см за период времени t бесконечно мала; как только оканчивается период t, эта бесконечно малая величина вариации вливается в стационарный фон и следующий цикл вариации не складывается с предыдущим, а протекает на фоне стационарного потока в виде бесконечно малого возмущения. Закономерность, о которой идет речь, заключается в обнаруженном замечательном свойстве емкостных измерений с параллельным и перпендикулярным к направлению потока СВЧ-полями: всегда воспринимать поток однородно перемешанным в продольном направлении, т.е. стационарным.

Кроме того, цель достигается тем, что устройство для осуществления способа содержит расположенные в потоке измеряемой среды датчики температуры, давления и измеритель диэлектрической проницаемости, выполненный в виде двух концентрирующих электромагнитные поля резонаторов, расположенных на фиксированном расстоянии друг от друга, оснащенных элементами ввода и вывода электромагнитных колебаний, соединенных с электронными блоками, возбуждающими и измеряющими резонансные частоты, замкнутыми на микропроцессорный блок, соединенный также с коммуникациями измерения температуры и давления, причем вдоль по потоку устанавливают два полуволновых или два четвертьволновых резонатора, снабженных вставками, одна из которых выполнена с одновитковой спиралью, при этом создают в этих резонаторах продольные или поперечные к направлению движения электрические поля, заключают эти поля в двухслойную оболочку, причем наружный слой этой оболочки выполняют из материала с металлической электропроводимостью, а промежуточный слой с диэлектрической проницаемостью ф, и тем самым создают электрические поля: поперечное с помощью коаксиального трубчатого резонатора с тарующей электрической емкостью С1 в виде спирального выреза длиной lo в боковой поверхности внутренней трубы резонатора, при этом спиральная вставка коротко замкнута на металлические трубопроводы и внешнюю оболочку резонатора, величину емкости на этом участке как для полуволновых, так и для четвертьволновых резонаторов выбирают согласно соотношению
C= , где эф диэлектрическая проницаемость измеряемой среды, нормированная на диэлектрическую проницаемость вакуума;
d внутренний диаметр резонатора, совпадающий с диаметром магистрального трубопровода;
l0 длина участка, выбираемая на основании экспериментальных данных при варьировании l0 в интервале: d l0 4d;
D диаметр внешней металлической оболочки резонатора;
ширина полосы спирали в вырезе трубы, замкнутой на металлические конструкции транспортной магистрали, и продольное создаваемое с помощью двустороннего коаксиального трубчатого резонатора, выполненного в виде радиального разрыва трубопровода, в котором внутренняя оболочка с металлической электропроводностью заменена вставкой того же диаметра, как у исходной трубы длиной l, но выполненной из материала с диэлектрической проницаемостью ф и длиной l, при этом l подбирается экспериментально за счет ее варьирования в диапазоне 0,1d l 4d, емкость такого полуволнового или четвертьволнового резонатора с продольным полем (фиг.1) определяется соотношением
C эфd, где K(k) и K(k') полные эллиптические интегралы, модули которых
k и k , причем в указанных полуволновых резонаторах резонансные частоты определяются по соотношениям
f= ;
f и в четвертьволновых резонаторах по соотношениям
f= ;
f= , где с скорость света;
Zo волновое сопротивление резонатора, одинаковое для резонаторов с продольным и поперечным полями,
Zo= ln [Oм] l, l, l1, l2 длины плеч внутренних трубопроводов резонаторов с продольными и поперечными полями , связанные соотношениями
l= arctg tg <
f2= arctg > входное сопротивление замкнутых отрезков l и l1 является индуктивным и связано с сопротивлением конденсаторов c и c соотношениями
Zotg < ;
Zotg > , обеспечивающими возникновение в резонаторах противофазных стоячих волн, период и длина волны которых являются функцией диэлектрической проницаемости среды эф, протекающей через резонатор, что позволяет при измеренных температуре Т и давлении Р в протекающей среде определить ее эффективную плотность, распределение фаз и количества тепла, аккумулированного в потоке, располагая при этом два резонатора друг за другом, определяют в них взаимокорреляционные функции резонансных частот и по этим функциям и измеренной эффективной плотности протекающей среды определяют расход.

На фиг.1 изображен объем конденсатора, вставленного в измеряемую среду, электрическое поле в котором перпендикулярно границе раздела фаз этой среды в нем; на фиг. 2 объем конденсатора, вставленного в измеряемую среду, электрическое поле в котором параллельно границе раздела фаз этой среды в нем; на фиг.3 показана диаграмма зависимости диэлектрической проницаемости измеряемой среды, помещенной в конденсатор, от объемной концентрации составляющих ее фаз в резонаторе ; на фиг.4 диаграмма зависимости диэлектрической проницаемости от паросодержания перемешанной части потока; на фиг.5 представлено устройство диагностирования характеристик двухфазных потоков с полуволновыми двусторонними трубчатыми резонаторами; на фиг.6 устройство диагностирования характеристик двухфазных потоков с четвертьволновыми двусторонними трубчатыми резонаторами; на фиг.7 дан разрез А-А на фиг.5; на фиг.8 показано соединение участков трубы с двумя пластинами; на фиг.9 разрез А-А на фиг.5; на фиг.10 соединение участков трубы с четырьмя пластинами.

Устройство содержит трубопровод, состоящий из участков 1,2 и 3 с размещенными на нем резонаторами 4 и 5, выполненными из корпусов 6 и 7, в которых размещены диэлектрические вставки 8 и 9, закрепленные на трубопроводе посредством втулок 10, 11 и 12. Участки 1, 2 и 3 трубопровода разделены диэлектрическими втулками 13 и 14. На внешней поверхности втулки 14 размещена одновитковая спираль 15, концами жестко закрепленная на участках 1 и 2 трубопровода. Датчик 16 давления и датчик 17 температуры размещены на трубопроводе. Участки 3 и 2 трубопровода могут быть снабжены двумя или четырьмя пластинами (фиг.8 и 10).

В предлагаемом устройстве производят непрерывные замеры температуры, давления, плотности и расхода в потоках газов, жидкостей, их двухфазных или многокомпонентных смесей. В любом заданном участке движения потока с неизвестным фазовым составом и гомогенно или гетерогенно распределенными компонентами с относительно высокой и относительно низкой плотностями создают последовательно расположенные зоны заданной геометрии с концентрированными в них СВЧ электромагнитными полями с параллельным и/или поперечным к направлению движения среды векторами электрического поля. В резонаторах 4 и 5, размещенных вдоль потока на участках 1,2 и 3 трубопровода, создают продольные и поперечные к направлению движения электрические поля.

В трубчатом двустороннем коаксиальном резонаторе, где емкость С образована зазором между трубами, длины которых обозначаются l1 и l2, возбуждаются близко расположенные два резонанса: высокочастотный противофазный вид колебаний, при котором силовые линии электрического поля имеют по обе стороны от диэлектрической вставки противоположные направления, и низкочастотный -синфазный вид колебаний, при котором силовые линии электрического поля по обе стороны диэлектрической вставки имеют одно и то же направление. Для измерения резонансной частоты в параллельном поле (C) в изобретении используется противофазный вид колебаний, но длину l2 увеличивают так, чтобы резонансная частота сместилась в высокочастотную область и была удобной для регитсрации при помещении среды в емкость C.

Для измерения частоты в перпендикулярном поле (C) используется трубчатый коаксиальный резонатор, в котором емкость (C) образована витком спирали из металла, нанесенным на поверхность диэлектрической вставки, образующим с металлическим корпусом резонатора перпендикулярное электрическое поле. Виток спирали имеет электрический контакт с металлическими трубами резонатора длинами l1 и l2 образующих в цепи с металлическим корпусом устройства резонатор с поперечным электрическим полем. Если в таком резонаторе плечи l1 и l2 равны (l1= l2), то в нем также возбуждаются два близкорасположенных резонанса: высокочастотный противофазный вид колебаний инзкочастотный синфазный вид колебаний. Для измерения резонансной частоты в резонаторе с перпендикулярным электрическим полем f1 в изобретении используют синфазный вид колебаний, но длину l2 уменьшают так, чтобы резонансная частота сместилась в низкочастотную область на столько, на сколько это необходимо для удобства ее регистрации.

Поперечное поле () создается с помощью резонатора 4, продольное поле () с помощью резонатора 5. В этих полях измеряют резонансные частоты f и fp, зависящие от фазового состояния движущихся в них сред, определяют по значениям этих частот величины продольной и поперечной диэлектрической проницаемости потока. По величинам и определяют объемное содержание компонента с низкой плотностью и компонента с высокой плотностью (1 ). Определяют диэлектричекую проницаемость эф, плотность эф и энтальпию iэф потока измеряемой среды. Измеряют в зонах с концентрированными сверхчастотными электромагнитными полями авто- или взаимокорреляционные функции резонансных частот, возникающих в движущейся измеряемой среде, определяют по этим функциям совместно с измерением эффективной плотности массовый расход измеряемой среды, а совместно с измерением энтальпии величину тепла, аккумулированного в потоке, чем обеспечивают контроль за процессами энергообмена, энергопреобразования и управление ими.

Изобретение может применяться для измерения непосредственно в транспортных магистралях и трубопроводов характеристик потоков газов, жидкостей, их двухфазных или многокомпонентных смесей, используемых или возникающих в процессе работы агрегатов в тепловой и ядерной энергетике, нефтехимии, криогенной технике, технологиях переработки и потребления природного и сжиженного газа, а также в других технологиях, где применяются потоки поляризуемых сплошных сред.


Формула изобретения

1. Способ определения параметров двухфазных потоков сплошных сред, заключающийся в воздействии на поток контролируемой среды электромагнитным полем, измерении параметров электромагнитного поля и определении по ним искомых параметров, отличающийся тем, что воздействие электромагнитным полем на поток контролируемой среды осуществляют путем пропускания контролируемой среды через последовательно расположенные резонаторы, вектор электрического поля которых расположен в параллельной и/или поперечной плоскости к направлению движения среды, в качестве параметров электромагнитного поля используют резонансные частоты этих резонаторов, дополнительно измеряют температуру и давление определяют величины продольной и поперечной диэлектрических проницаемостей потока согласно соотношениям


где 1 и 2 значения диэлектрических проницаемостей компонент измеряемой среды с низкой и высокой плотностями, выбираемыми при измеренных температуре T и давлении P из известных данных об электрофизических свойствах этих компонент;
передаточные функции электромагнитных полей, определяемые при заполнении резонаторов контролируемой средой;
резонансные частоты резонаторов с векторами электрического поля в продольной и поперечной плоскостях соответственно;
резонансные частоты резонаторов с векторами электрического поля в продольной и поперечной плоскостях при полном заполнении резонаторов каждой компонентной в отдельности,
по величинам определяют объемное содержание компоненты с низкой плотностью и компоненты с высокой плотностью 1- , пользуясь соотношениями




а эффективные диэлектрическую проницаемость eэф, плотность эф и энтальпию iэф потока контролируемой среды определяют по соотношениям


эф= 1+(1-)2;

определяют авто- или взаимокорреляционные функции резонансных частот резонаторов, определяют по этим функциям совместно с эф массовый расход контролируемой среды, а совместно с iэф величину тепла, сравнивают эф, эф, iэф с известными параметрами на линии насыщения при температуре T и давлении P в измеряемой среде и по разности значений этих параметров определяют степень неравновестности фаз в среде.

2. Устройство для определения параметров двухфазных сплошных сред, содержащее трубопровод для потока контролируемой среды, генератор СВЧ, отличающееся тем, что в поток контролируемой среды введены датчики температуры, давления и два последовательно расположенных вдоль по течению полуволновых или четвертьволновых коаксиальных трубчатых резонатора, представляющих собой корпус из материала с металлической электропроводностью, в котором проходит трубопровод, выполненный из материала с металлической электропроводностью, при этом трубопровод состоит из нескольких участков труб, установленных с зазором, в которых установлены диэлектрические втулки, на одной из которых выполнена одновитковая спираль из материала с металлической электропроводностью, жестко прикрепленная на концах к участкам трубопровода, между корпусом резонаторов и трубопроводом размещены диэлектрические вставки, при этом длина диэлектрической втулки, на которой выполнена одновитковая спираль, выбирается из соотношения
d l0 4d,
где d -внутренний диаметр резонатора, совпадающий с диаметром трубопровода,
длину второй втулки выбирают из соотношения

а длины участков трубопровода, находящихся внутри резонаторов, выбирают из соотношений


где


ф диэлектрическая проницаемость материала втулки;
D диаметр внешнего металлического корпуса резонатора;
емкости четвертьволновых или полуволновых резонаторов с поперечным и продольным полями соответственно;
резонансные частоты для полуволновых или четвертьволновых резонаторов с поперечным и продольным полями соответственно,
генератор СВЧ соединен с элементами ввода энергии в резонаторы, элементы выхода которых соединены с измерителем резонансной частоты, который соединен с блоком обработки, входы которого соединены с датчиками температуры и давления, выход блока обработки является выходом устройства.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9, Рисунок 10



 

Похожие патенты:

Изобретение относится к измерению характеристик слоистых сред и может быть использовано для подповерхностного зондирования слоистых структур Земли, измерения характеристик слоистых покрытий

Изобретение относится к измерительной технике и может быть использовано для диагностики состояния механизма в процессе эксплуатации

Изобретение относится к области измерительной техники диапазона сверхвысоких частот (СВЧ) и может быть использовано для контроля листовых и пленочных материалов полимерных пленок, бумаги и т.п

Изобретение относится к технике СВЧ и предназначено для проведения исследований

Изобретение относится к радиоинтроскопии в диапазоне сверхвысоких частот и может быть использовано в дефектоскопии для обнаружения дефектов, существующих и возникающих в радиопрозрачных объектах при их вращении, а также в объектах, подвергающихся периодическим нагрузкам

Изобретение относится к радиоизмерительной технике и может использоваться для одновременного контроля в ходе технологического процесса двух параметров диэлектрических пленок на металлическом основании

Изобретение относится к исследованию физических свойств и состава вещества с помощью электромагнитных волн диапазона СВЧ и может быть использовано для определения влажности различных материалов

Изобретение относится к радиолокации, а именно к способам исследования подповерхностных слоев различных объектов

Изобретение относится к созданию материалов с заданными свойствами при помощи электрорадиотехнических средств, что может найти применение в химической, металлургической, теплоэнергетической, пищевой и других отраслях промышленности

Изобретение относится к измерительной технике, в частности к устройствам измерения влажности, и может быть использовано в тех отраслях народного хозяйства, где влажность является контролируемым параметром материалов, веществ и изделий

Изобретение относится к радиотехнике, а именно к технике измерений макроскопических параметров сред и материалов, и, в частности, может использоваться при неразрушающем контроле параметров диэлектрических материалов, из которых выполнены законченные промышленные изделия

Изобретение относится к измерительной технике, а именно к устройствам для неразрушающего контроля состояния поверхности конструкционных материалов и изделий и может быть использовано в различных отраслях машиностроения и приборостроения

Изобретение относится к технике измерений с помощью электромагнитных волн СВЧ диапазона и может использоваться для дефектоскопии строительных материалов различных типов с различной степенью влажности

Изобретение относится к средствам неразрушающего контроля и может использоваться для томографического исследования объектов и медицинской диагностики при различных заболеваниях человека, а также для лечения ряда заболеваний и контроля внутренних температурных градиентов в процессе гипертермии

Изобретение относится к области исследования свойств и контроля качества полимеров в отраслях промышленности, производящей и использующей полимерные материалы

Изобретение относится к исследованию объектов, процессов в них, их состояний, структур с помощью КВЧ-воздействия электромагнитных излучений на физические объекты, объекты живой и неживой природы и может быть использован для исследования жидких сред, растворов, дисперсных систем, а также обнаружения особых состояний и процессов, происходящих в них, например аномалий структуры и патологии в живых объектах

Изобретение относится к измерительной технике и может быть использовано для определения сплошности потоков диэлектрических неполярных и слабополярных сред, преимущественно криогенных
Наверх