Способ очистки сточных вод от ионов тяжелых металлов и шестивалентного хрома

 

Изобретение относится к способам очистки сточных вод от ионов тяжелых металлов и Cr(VI) сорбцией и может найти применение на предприятиях металлургической и химической промышленности, имеющих травильные и гольванические цеха. Целью изобретения является повышение эффективности очистки от ионов тяжелых металлов за счет дополнительного извлечения ионов шестивалентного хрома. Для осуществления способа сточные воды, содержащие ионы хрома и другие тяжелые металлы, пропускают через слой цеолита, предварительно обработанный раствором щавелевой кислоты с концентрацией 0,05 0,1 моль/л в присутствии минеральной кислоты до pH 1 2. Способ позволяет повысить степень очистки воды от ионов хрома (VI) до 100% при сохранении высокой степени очистки по другим ионам тяжелых металлов. 3 табл.

Изобретение относится к сорбционной очистке сточных вод и может быть использовано для извлечения ионов тяжелых металлов и хрома из растворов травильных и гальванических производств в химической и металлургической промышленности после реагентной очистки.

Известен способ извлечения ионов тяжелых металлов из питьевой воды и сточных вод промышленных предприятий с использованием в качестве адсорбента природных цеолитов (клиноптилолита и морденита) путем пропускания сточных вод через слой адсорбента.

Данный способ позволяет адсорбировать ионы цинка, меди, кадмия, свинца, замещая в кристаллической решетке цеолита ионы калия, натрия, кальция, магния. Подобный обмен осуществляется, когда ионы тяжелых металлов находятся в растворе в виде аквакомплексов типа Ме(Н2О)xz+. Шестивалентный хром присутствует в растворе в виде анионов Cr2O72- и CrO42-.

Недостатком способа является то, что шестивалентный хром не сорбируется цеолитами, однако, сточные воды гальванических производств содержат Cr (VI) в количествах, значительно превосходящих предельно допустимые концентрации (ПДК) его в водоемах различного назначения. Кроме того, с помощью этого способа очистки сточных вод не извлекается шестивалентный хром, являющийся одним из наиболее токсичных ионов.

Цель изобретения повышение эффективности очистки от ионов тяжелых металлов за счет дополнительного извлечения ионов шестивалентного хрома.

Цель достигается тем, что в известном способе очистки сточных вод от ионов тяжелых металлов путем пропускания сточных вод через слой адсорбента в качестве адсорбента используют природный цеолит, предварительно обработанный раствором щавелевой кислоты с концентрацией 0,05-0,1 моль/л и рН 1-2, а затем проводят сорбцию.

Для определения оптимальных параметров адсорбции растворов щавелевой кислоты цеолитсодержащими туфами проводились опыты при различных величинах рН и разной концентрации растворов щавелевой кислоты. В каждом опыте рассчитывалась величина предельной адсорбции щавелевой кислоты А моль/1 г на 1 г цеолита. Результаты приведены в табл.1.

Из полученных данных следует, что концентрация щавелевой кислоты менее 0,05 моль/л не позволяет достичь величины предельной адсорбции, концентрация более 0,1 моль/л является нецелесообразной, так как величина предельной адсорбции существенно не увеличивается и остается практически постоянной. Оптимальное значение рН растворов щавелевой кислоты с концентрацией 0,05-0,1 моль/л составляет 1-2. Уменьшение рН до 0,5 при выбранных концентрациях щавелевой кислоты не позволяет достичь оптимальной величины предельной адсорбции, а увеличение рН до 2,5 при этих же концентрациях является нецелесообразной, так как приводит к снижению величины предельной адсорбции.

Сопоставительный анализ с прототипом показывает, что предлагаемый способ отличается от известного тем, что в качестве адсорбента используют цеолит, предварительно обработанный 0,05-0,1 моль/л раствором щавелевой кислоты с рН 1-2. Кроме того, не обнаружено в патентной и научно-технической литературе технических решений способов очистки сточных вод от ионов тяжелых металлов и шестивалентного хрома, в которых для решения поставленной цели используют цеолит, предварительно обработанный раствором щавелевой кислоты с концентрацией 0,05-0,1 моль/л и рН 1-2.

П р и м е р. В сорбционную колонку диаметром 2 см помещают 100 г цеолита с размером частиц (5-10) 10-8 м3. Затем через слой сорбента пропускают раствор щавелевой кислоты концентрации 0,1 моль/л и рН 1, полученный введением минеральной кислоты, в течение 3,5-4 ч.

После подготовки сорбента через колонку с определенной скоростью пропускают сточную воду, содержащую ионы железа, цинка, меди, хрома (VI), хрома (III). Для анализа отбирают пробу очищенной воды. Определение содержания ионов меди, хрома (VI) проводят фотоколориметрически с диэтилдитиокарбаматом натрия, содержание ионов железа, цинка и хрома (III) атомно-адсорбционным методом. Результаты приведены в табл.2.

Для подтверждения правильности выбранных интервалов концентраций щавелевой кислоты и рН ее растворов проведена серия опытов по очистке сточных вод, содержащих ионы тяжелых металлов и шестивалентный хром, результаты которых представлены в табл.3.

Из данных табл.3 следует, что максимальная степень очистки достигается при выбранных значениях рН и концентрации щавелевой кислоты (рН 1-2, С 0,05-0,1 моль/л).

Использование предлагаемого способа очистки сточных вод от ионов тяжелых металлов и шестивалентного хрома обеспечивает по сравнению с прототипом следующие преимущества: повышается эффективность очистки сточных вод за счет дополнительного извлечения ионов шестивалентного хрома; степень очистки по ионам Cr (VI) достигает 100% при сохранении высокой степени очистки по ионам меди, железа и цинка и составляет соответственно 98,2% 99,2% 98,1% Предлагаемый способ позволяет использовать очищенную воду в оборотном цикле или непосредственно сбрасывать в природные водоемы, так как вода удовлетворяет уровню предельно допустимой концентрации по содержанию этих ионов в воде.

Формула изобретения

СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД ОТ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ И ШЕСТИВАЛЕНТНОГО ХРОМА, заключающийся в пропускании сточных вод через слой адсорбента, отличающийся тем, что в качестве адсорбента используют природный цеолит предварительно обработанный раствором щавелевой кислоты с концентрацией 0,05-0,1 моль/л и рН 1-2.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к очистке воды от органических соединений и взвешенных частиц и может быть использовано в пищевой промышленности, цехах с замкнутым циклом водообеспечения, в очистных сооружениях пищевой промышленности, а также для очистки промышленных сточных вод

Изобретение относится к пищевой промышленности и может быть использовано в сыроделии для очистки рассолов

Изобретение относится к пищевой промышленности и может быть использовано в сыроделии для очистки рассолов

Изобретение относится к устройствам для дистилляции воды и может быть использовано в химических лабораториях, аптеках, на аккумуляторных станциях и в других производствах, в которых необходимо получать дистиллированную воду с расходом 5-80 л/ч

Изобретение относится к охране окружающей среды и может быть использовано для очистки поверхности водоемов от нефти и нефтепродуктов

Изобретение относится к охране окружающей среды и может быть использовано для защиты от загрязнения тяжелыми металлами подземных питьевых вод, грунтов и почв

Изобретение относится к охране окружающей среды и может быть использовано для защиты от загрязнения тяжелыми металлами подземных питьевых вод, грунтов и почв

Изобретение относится к области получения фильтрующих материалов и использования этих материалов в фильтрах для очистки сточных нефтесодержащих вод нефтяного производства от нефтепродуктов

Изобретение относится к электрохимической обработке водных растворов и получения газов, а именно к электрохимической установке со сборными и распределительными коллекторами анолита и католита, при этом анодные и катодные камеры выполнены в форме параллелограмма, в верхних и нижних углах которого для сообщения соответственно со сборными и распределительными коллекторами устроены каналы, обеспечивающие направление движения электролитов в анодных камерах справа-наверх-влево, а в катодных камерах - слева-наверх-вправо, и выполненные в виде ограниченного пространства, осуществляющего неполное сжатие и расширение потока электролита за счет того, что одна сторона канала представляет собой прямую, являющуюся продолжением боковой стенки камеры до пересечения со сборным или распределительным коллектором в точке прохождения радиуса коллектора R, перпендикулярного этой боковой стенке, вторая сторона канала изготовлена в виде полукруга, соединяющего сборный или распределительный коллектор со второй боковой стенкой камеры в точке пересечения полукруга с радиусом коллектора R, параллельным прямой стороне канала, причем радиус полукруга r и радиус сборного или распределительного коллектора R связаны соотношением R > r > 0

Изобретение относится к обработке воды, а именно к способу обеззараживания воды, основанному на электролизе, при этом обработку исходной воды осуществляют одновременным воздействием на нее в анодных камерах двух двухкамерных электролизеров с катионообменными мембранами атомарного кислорода, угольной кислоты, а также гидратированных ионов пероксида водорода с введением в анодную камеру первого электролизера водного раствора гидрокарбоната натрия с рН = 10,5...11,5, в анодную камеру второго электролизера водного раствора гидрокарбоната натрия с рН = 8,5...9,0, получением после анодной камеры первого электролизера анолита с рН = 3-4, последующей доставкой его в обе камеры второго электролизера и получением после катодной камеры второго электролизера питьевой воды с рН = 7,0-8,5, при этом получаемый во втором электролизере анолит смешивается с исходной водой перед введением в камеры первого электролизера, а католит после первого электролизера отводится из устройства
Наверх