Способ концентрирования растворов, содержащих сульфат натрия

 

Изобретение относится к процессам концентрирования растворов, в частности к энергоэкономичному способу выпаривания воды из технологических растворов вискозных производств, содержащих сульфат натрия. Сущность изобретения: вторичный пар однокорпусной вакуум-выпарной установки нейтрализуют до pH ~ 7, а затем сжимают в устройстве механического сжатия пара до давления греющего пара, увлажняют до насыщения и используют в процессе выпаривания. По сравнению со схемой выпаривания растворов в однокорпусных вакуум-выпарных установках с использованием пароструйных инжекторов как трансформаторов тепла вторичного пара расход тепловой энергии водяного пара сокращается в 35 - 40 раз, а расход энергии всех видов - на порядок. 1 ил., 1 табл.

Изобретение относится к концентрированию растворов, содержащих сульфат натрия, в частности к способу выпаривания под вакуумом избытка воды из технологических растворов вискозных производств.

При формовании гидратцеллюлозных волокон, получаемых по вискозному методу, в циркуляционном контуре осадительной ванны накапливается избыточное количество воды, образующейся в результате взаимодействия серной кислоты осадительной ванны с едким натром, содержащимся в прядильном растворе. Возникает необходимость удаления избыточного количества воды из осадительной ванны выпариванием. Ориентировочно, на выпаривание 1 кг воды требуется затратить 2,5-3,25 МДж тепловой энергии (1-1,3 кг греющего пара).

Известны способы выпаривания воды из растворов, позволяющие снизить расход греющего пара на выпаривание. Одним из таких способов является проведение процесса выпаривания под вакуумом с использованием пароструйных инжекторов в качестве трансформаторов тепла вторичного пара. Часть вторичного пара в количестве, необходимом для получения греющего пара установки, сжимают в пароструйном инжекторе до давления греющего пара, образующуюся после сжатия смесь вторичного и рабочего паров увлажняют до насыщения и используют для обогрева того же корпуса, в котором вторичный пар образуется, другую часть вторичного пара конденсируют водой.

Недостатками способа являются низкий КПД инжектора и, соответственно, большой расход рабочего пара на сжатие компремируемой части вторичного пара, невозможность использовать все количество вторичного пара и его тепловую энергию для обогрева установки, поскольку при инжекционном сжатии происходит смешение вторичного пара с рабочим паром инжектора, что приводит к образованию избытка низкотемпературной смеси паров сверх количества, необходимого для получения греющего пара; большой расход охлаждающей воды.

Наиболее близким по технической сущности и достигаемому результату к предлагаемому способу является выпаривание технологических растворов производства вискозных волокон в однокорпусной вакуум-выпарной установке с пароструйным инжектором в качестве трансформатора тепла вторичного пара. Сущность способа заключается в том, что исходный раствор с температурой 48-50оС предварительно дегазируют под вакуумом, затем смешивают с потоком циркулирующего через сепаратор раствора, смешанный поток нагревают в подогревателе циркуляционного контура на 2-5оС и перегретый раствор вводят в сепаратор с остаточным давлением 0,08-0,10 бар. При адиабатическом кипении перегретого раствора на выходе из циркуляционных труб в сепаратор некоторое количество воды переходит из раствора в паровую фазу, образуя вторичный пар, а жидкая фаза укрепляется и упаренный раствор выводят из сепаратора и с установки. Часть вторичного пара сжимают в пароструйном инжекторе до давления греющего пара, увлажняют до насыщения и направляют в межтрубное пространство подогревателя в качестве греющего пара. Другую часть вторичного пара из сепаратора направляют в барометрический конденсатор смешения, охлаждаемый водой. Неконденсирующиеся пары и газы из подогревателя и дегазатора также направляют в этот конденсатор смешения и далее удаляют водокольцевым насосом в атмосферу. Конденсат греющего пара сливают в барометрический бак.

Недостатками данного способа выпаривания растворов являются большие затраты тепловой энергии рабочего пара в инжекторы из-за низкого КПД инжекторов и использования только части вторичного пара для получения необходимого количества греющего пара; большой расход охлаждающей воды на конденсацию не подвергаемой термокомпрессии части вторичного пара.

Предлагаемое техническое решение направлено на устранение вышеуказанных недостатков.

Сущность заключается в том, что раствор дегазируют под вакуумом, затем направляют на стадию адиабатического кипения. Упариваемый раствор подвергают циркуляции по контуру сепаратор-нагреватель-сепаратор, а упаренный раствор выводят в контур формования. Образующийся на стадии испарения вторичный пар подвергают нейтрализации, сушке, механическому сжатию и увлажнению водой до параметров греющего пара.

Процесс осуществляют по схеме, представленной на чертеже.

Исходный технологический раствор подают в дегазатор 1, находящийся под вакуумом, где из раствора выделяют преимущественно растворимые в нем газы и воздух. Дегазированный раствор после дегазатора под гидростатическим давлением столба раствора направляют в сепаратор 2, также находящийся под вакуумом. Из сепаратора 2 поток исходного дегазированного раствора в смеси с циркулирующим количеством упаренного раствора поступает в циркуляционные контура 3 с подогревателями 4. В подогревателях 4 циркулирующие потоки нагревают греющим паром, поступающим в межтрубное пространство подогревателей. Перегретый в подогревателях 4 раствор на выходе из циркуляционных контуров в сепаратор кипит при температуре растворного слоя сепаратора с образованием вторичного пара. Упаренный раствор выводят из сепаратора 2 по барометрическому стояку 5 в барометрический бак 6 и далее насосом 7 направляют на станцию приготовления растворов. Вторичный пар сепаратора 2 через сухопарник 8 поступает в нейтрализатор-осушитель 9, где пар нейтрализуют в аппаратах колонного типа промывкой нейтрализующим раствором и сушат (отделяют от увлекаемых потоком пара капель и брызг упариваемого раствора). Из нейтрализатора 9 вторичный пар поступает в устройство механического сжатия вторичного пара (МСП) 10. В устройстве 10 вторичный пар сжимают до давления греющего пара, увлажняют конденсатом до состояния насыщения, добавляют необходимое количество свежего пара и в качестве греющего пара по паропроводам 11 направляют в межтрубное пространство подогревателей 4. Конденсат греющего пара из подогревателей 4 по барометрическим стоякам 12 сливают в барометрический бак 13, откуда направляют на дальнейшую утилизацию тепла, а неконденсирующиеся пары и газы по вакуумопроводу 14 направляют в барометрический конденсатор смешения 15, охлаждаемый водой. В конденсатор 15 по вакуумопроводу 16 поступают также пары и газы, выделенные в дегазаторе 1 из исходного раствора. Охлаждающую воду и конденсат из конденсатора 15 по барометрическому стояку 17 сливают в барометрический бак 18 и далее в контур оборотной воды. Неконденсирующиеся пары и газы из барометрического конденсатора 15 откачивают водокольцевым вакуумным насосом 19 в атмосферу.

П р и м е р 1. Способ осуществляют на промышленной однокорпусной вакуум-выпарной установке с сепаратором диаметром D=1600 мм, длиной L=3100 мм с двумя контурами циркуляции и, соответственно, с двумя кожухотрубными подогревателями из углеграфита с поверхностью теплообмена по 110 м2 каждый. На выпаривание подают 32500 кг/ч осадительной ванны штапельного производства плотностью 1300 кг/м3 следующего состава, г/л: Н2SO4 110; Na2SO4 300; ZnSO4 15; H2O остальное. Концентрация сульфата натрия в исходном растворе 23,0 мас. в упаренном 25,4 мас. Плотность упаренного раствора 1340 кг/м3. Вторичный пар после сепаратора подвергают нейтрализации до рН 7,0 в полочном нейтрализаторе промывкой щелочным раствором с температурой 46оС. Сжатие вторичного пара осуществляют в одноступенчатом турбокомпрессоре с электроприводом со степенью сжатия 1,72 от давления пара Р1=0,1 бар до давления Р2= 0,172 бар. В сжатый перегретый пар впрыскивают конденсат до насыщения (gк=81 кг/ч. tк= 40оС) и образующийся сухой насыщенный пар с температурой 57оС направляют в подогреватели в качестве греющего пара. Расход свежего греющего пара на компенсацию потерь 50 кг/ч. Неконденсирующиеся пары и газы откачивают из барометрического конденсатора смешения водокольцевым вакуумным насосом. Опыт проводят при температуре исходного и упаренного растворов на входе и выходе с установки 49оС. Условия и результаты опыта представлены в таблице.

П р и м е р 2. Опыт проводят по способу, принятому за прототип. В качестве тепловых насосов используют 4 пароструйных инжектора в параллельном режиме работы, с рабочим паром параметров Ро=3 бар, to=133оС. Условия и результаты опыта представлены в таблице.

Как следует из таблицы, проведение процесса выпаривания воды из технологических растворов производства вискозной продукции, содержащих сульфат натрия, по предлагаемому способу позволяет по сравнению с прототипом сократить удельный расход рабочего пара с 654 кг/1000 кг выпаренной воды до 17 кг/1000 кг выпаренной воды, т.е. в 38 раз; расход охлаждающей воды с 33-110 м3/ч до 0,5-1,5 м3/ч, т.е. в 70 раз; удельные затраты всех видов энергии на выпаривание с 1655,5 МДж/1000 кг выпаренной воды до 171 МДж/1000 кг выпаренной воды, т.е. в 9,7 раза.

Формула изобретения

Способ концентрирования растворов, содержащих сульфат натрия, включающий дегазацию исходного раствора, адиабатическое кипение с циркуляцией упариваемого раствора по контуру сепаратор нагреватель сепаратор, вывод упаренного раствора, сжатие образующегося на стадии кипения вторичного пара, увлажнение сжатого пара до состояния насыщенного греющего пара и возврат в систему, отличающийся тем, что вторичный пар подвергают механическому сжатию с предварительной нейтрализацией его.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:
Изобретение относится к технологии получения бесхлорного калийного удобрения - сульфата калия и может быть использовано на калийных заводах, перерабатывающих сильвиниты на хлористый калий, а также на коксохимических заводах, получающих сульфат аммония

Изобретение относится к способам получения соединений калия и магния из полиминеральной лангбейнитовой руды
Изобретение относится к переработке щелочных сульфатно-тиосульфатных растворов, образующихся при обезвреживании хром VI содержащих хроматных шламов заводов хромовых соединений, с получением товарных сульфата и тиосульфата натрия по безотходной технологии

Изобретение относится к переработке щелочных сульфатно-тиосульфатных растворов, образующихся при обезвреживании хром (VI)-содержащих хроматных шламов заводов хромовых соединений, с получением сульфата и тиосульфата натрия по безотходной технологии

Изобретение относится к способу получения сульфата калия путем взаимодействия хлорида калия и сульфата натрия с маточным раствором сульфата калия с получением глазерита, отделение глазерита, взаимодействия хлорида калия и воды с получением сульфата калия и маточного раствора сульфата калия, охлаждение маточного раствора глазерита и кристаллизации глауберовой соли, а также отделения и рециркуляции глауберовой соли в стадию кристаллизации глазерита

Изобретение относится к способу непрерывного получения сульфата калия

Изобретение относится к способу обработки отходов в виде сульфата натрия реакцией обмена с хлоридом калия с получением сульфата калия в присутствии воды

Изобретение относится к цветной металлургии, конкретно к комплексной переработке нефелиновых руд с высоким молярным индексом калийной щелочи на глинозем и содопоташные продукты

Изобретение относится к технике получения сульфата калия
Изобретение относится к технике получения сульфата калия из хлорида калия и сульфата аммония в водной среде

Изобретение относится к технике производства минеральных удобрений, а именно к технологии получения сульфата калия из хлорида калия и сульфата аммония в водной среде переработкой избыточных растворов на комплексное NPK-удобрение

Изобретение относится к области химической технологии, а именно к способам получения сульфата калия

Изобретение относится к технике получения сульфата калия из хлорида калия и сульфата аммония в водной среде
Наверх