Устройство для обработки газа

 

Использование: очистка газов в различных отраслях промышленности, где возможно применение аппаратов мокрого типа. Сущность изобретения: сокращение энергетических затрат на обработку газа за счет уменьшения гидравлических потерь его напора путем снижения интенсивности турбулентных пульсаций достигается тем, что кольцевая диафрагма 5 закручивателя выполнена в виде обратного усеченного конуса с углом раскрытия 90 - 150o к его нижнему основанию и размещенного с зазором верхним основанием в торцевом сечении выхлопной трубы 3. 1 з.п.ф-лы, 4 ил.

Изобретение относится к средствам очистки газов в слое механической пены, образуемой путем диспергирования жидкости закрученным потоком обрабатываемого газа, и может быть использовано в различных областях промышленности, где возможно применение аппаратов мокрого типа.

Известно устройство для обработки газа посредством образования пены, содержащее корпус с бункером, каплеотделителем и патрубками ввода и вывода газа, разделенный по высоте перегородкой с вертикальными трубами, оборудованными снизу закручивателями из лопаток, закрепленных по окружности между плоскими кольцевыми направляющими, верхняя из которых примыкает кромкой кольцевого отверстия к наружной поверхности трубы [1] Недостаток известного устройства состоит в значительном гидравлическом сопротивлении, создаваемом интенсивной турбулентной пульсацией, которая обусловлена возникновением отрывных течений газа при разнонаправленном горизонтальном обтекании им верхних кольцевых направляющих с резким поворотом на 180o потоков, движущихся через закручиватели внутрь труб. Этот недостаток известного устройства дополнительно усиливает наложение взаимного влияния потоков, обтекающих кольцевые направляющие смежных закручивателей, особенно при повышении объема пропускаемого через устройство газа - производительности по газу.

Указанный недостаток частично устранен в устройстве, содержащем корпус с патрубком ввода газа и вертикальной выхлопной трубой, верхний торец которой оборудован сепаратором-каплеуловителем, а нижний закручивателем из лопаток, равномерно укрепленных по окружности выхлопной трубы под острым углом к касательной в точке крепления, и плоской кольцевой диафрагмой на их верхних кромках, размещенной в плоскости торцевого сечения трубы с зазором между ее внутренней поверхностью и наружной кромкой диафрагмы. Благодаря этому достигается однонаправленное обтекание газом кольцевой диафрагмы с уменьшением угла поворота до 90o, что сокращает зону отрыва течения и интенсивность турбулентных пульсаций. По совокупности признаков данное известное устройство наиболее близко к предлагаемому и принято в качестве наиболее близкого аналога [2] Недостаток известного устройства состоит в значительных гидравлических потерях напора газа, возникающих из-за сохранения зоны отрывного течения при повороте на 90o потоков, движущихся в закручиватель, и дополнительного сопротивления, создаваемого сужением прохода газа внутрь трубы закручивателя, размещением в ее торцевом сечении плоской кольцевой диафрагмы. Особенно резко этот недостаток проявляется при повышении объема пропускаемого через устройство газа.

Технический результат изобретения сокращение энергетических затрат на обработку газа за счет уменьшения гидравлических потерь его напора путем снижения интенсивности турбулентных пульсаций.

Технический результат достигается тем, что в устройстве для обработки газа, включающем корпус, частично заполненный жидкостью, с патрубком ввода газа и одной или несколькими вертикальными выхлопными трубами, верхние концы которых оборудованы сепараторами, а нижние закручивателями из лопаток, равномерно укрепленных по окружности выхлопной трубы под острым углом к касательной в точке крепления, и кольцевой диафрагмы на их верхних кромках, согласно изобретению, кольцевая диафрагма выполнена в виде обратного усеченного конуса с углом раскрытия 90 150o к его нижнему основанию, при этом верхнее основание конуса размещено с зазором к торцу выхлопной трубы.

Выполнение кольцевой диафрагмы в виде перевернутого конуса с углом раскрытия 90 150o к его нижнему основанию, образующему отверстие входа внутрь выхлопной трубы, снижает интенсивность турбулентных пульсаций за счет направляемого конической поверхностью плавного последовательного поворота потока газа при их движении через закручиватель внутрь выхлопной трубы.

Размещение конической диафрагмы верхним основанием с зазором в торцевом сечении выхлопной трубы обеспечивает сокращение зон отрывного течения газа за счет их заполнения образующейся на конической поверхности однонаправленно движущейся с газом пленки жидкости, частично стекающей через кольцевой зазор из выхлопной трубы.

Кроме того, за счет увеличения диаметра отверстия входа в выхлопную трубу у кольцевой конической диафрагмы по сравнению с плоской, при равновеликой ширине их кольцевой поверхности, снижается гидравлическое сопротивление проходу газа внутрь трубы.

На фиг.1 показан общий вид устройств; на фиг.2 сечение по А-А на фиг.1; на фиг. 3 сопряжение конической диафрагмы с выхлопной трубой в продольном сечении; на фиг.4 вид по Б-Б на фиг.3.

Устройство содержит корпус 1, патрубок ввода газа 2, одну или несколько вертикальных выхлопных труб 3 аналогичной конструкции. Нижние концы выхлопных труб заглублены в корпусе устройства и снабжены закручивателем из лопаток 4, равномерно укрепленных по окружности торцевого сечения каждой из труб под острым углом к касательной в точке крепления. Верхние кромки лопаток снабжены кольцевой диафрагмой 5, выполненной в виде обратного усеченного конуса с углом раскрытия 90 150o к его нижнему основанию, образующему отверстие входа внутрь выхлопной трубы. Коническая диафрагма размещена своим верхним основанием в торцевом сечении выхлопной трубы с зазором по отношению к ее внутренней поверхности. Верхние концы выхлопных труб 3 оборудованы сепараторами 6 и помещены в камеру каплесборника 7, снабженного патрубком 8 для выхода обработанного газа.

Устройство работает следующим образом.

Подлежащий обработке газ поступает в корпус 1 через входной патрубок 2 и, распределяясь в пространстве между выхлопными трубами 3, опускается вдоль них к поверхности жидкости, заполняющей нижнюю часть корпуса, в которую частично погружены лопатки 4 закручивателей. Достигшая жидкости масса газа начинает двигаться внутрь выхлопных труб, получая при этом первичный вращательный импульс и, разделяясь лопатками 4 на потоки, равномерно распределяемые по окружности торцевого сечения труб. Направляемые конической поверхностью кольцевой диафрагмы 5 потоки газа движутся с ускорением в сужающихся межлопаточных каналах закручивателя и, приобретая высокую скорость вращения, вызывают интенсивную вихреобразную инжекцию капель и струй жидкости с ее поверхности. При этом, образуется газожидкостная система с развитой внутренней поверхностью контакта фаз, движущаяся за счет кинетической энергии течения газа внутрь выхлопной трубы. Благодаря направляющему воздействию конической поверхности кольцевой диафрагмы 5, сходящейся к отверстию входа в трубу с образованием острого угла с поверхностью жидкости, движение газа через закручиватель (фиг. 3) осуществляется с последовательным плавным поворотом потоков, гасящим образование отрывных зон и непроизводительные гидравлические потери кинетической энергии напора газа. После прохождения газожидкостной системы через отверстие диафрагмы внутрь трубы из-за скачкообразного расширения сечения резко падает скорость газа, и он переходит к осесимметричному восходящему движению, в то время как капли и струи жидкости, плотность которых в 103 раз превышает плотность газа, сохраняют вращательное движение с радиальным смещением от оси вращения. Такая разнонаправленность движения газа и жидкости способствует их интенсивному перемешиванию (возможно образование механической пены), обеспечивая высокую эффективность обработки газа. Часть жидкости в процессе радиального смещения достигает поверхности трубы, тормозится о нее и стекает вниз. Проходя через кольцевой зазор 9 между диафрагмой 5 и поверхностью трубы 3, эта часть жидкости образует пленочный сток по наружной поверхности конической диафрагмы, гасящей возникновение зон отрывного течения, что способствует снижению гидравлических потерь напора газа. Другая часть жидкости постепенно переходит к совместному с газом восходящему осесимметричному движению по выхлопной трубе. Проходя через сепараторы 6, обработанный газ освобождается от остаточной капельной жидкости и, сливаясь в камере каплесборника 7 в единый поток, через патрубок 8 удаляется из устройства.

Испытаниями опытного образца устройства установлено, что при выполнении кольцевой диафрагмы в виде усеченного конуса с углом раскрытия в пределах 90 150o достигается снижение гидравлических потерь на 25 30% по сравнению с прототипом. С уменьшением угла раскрытия относительно заявленного предела 90o резко возрастают по гиперболической зависимости гидравлические потери напора газа из-за интенсивных турбулентных пульсаций, возникающих вследствие увеличения отрывного течения, обусловленного переходом к резконаправленному (вниз-вверх) обтеканию кромки нижнего основания диафрагмы с резким поворотом потоков внутрь выхлопной трубы. С превышением заявленного предела 150o гидравлические потери гиперболически возрастают из-за интенсивных турбулентных пульсаций, вызываемых увеличением зоны отрывного течения, обусловленным разрушением жидкостной пленки на конической поверхности диафрагмы.

Таким образом, совокупность признаков выполнение кольцевой диафрагмы в виде перевернутого усеченного конуса с углом схождения 90 150o к его нижнему основанию и размещенного с зазором в верхнем основании в торцевом сечении выхлопной трубы обеспечивает уменьшение гидравлических потерь напора газа за счет снижения интенсивности турбулентных пульсаций.

Формула изобретения

1. Устройство для обработки газа, содержащее корпус, частично заполненный жидкостью, с патрубком ввода газа и вертикальной выхлопной трубой, верхний конец которой оборудован сепаратором, а нижний закручивателем из лопаток, равномерно укрепленных по окружности выхлопной трубы под острым углом к касательной в точке крепления, и кольцевой диафрагмой, размещенной на верхних кромках лопаток, отличающееся тем, что кольцевая диафрагма выполнена в виде обратного усеченного конуса с углом раскрытия 90 150°, при этом верхнее основание конуса размещено с зазором к торцу выхлопной трубы.

2. Устройство по п. 1, отличающееся тем, что оно снабжено дополнительными выхлопными трубами с конструкцией, аналогичной имеющейся.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4



 

Похожие патенты:

Изобретение относится к средствам очистки и тепломассообменной обработки газов и может быть использовано в химической и топливоэнергетической промышленности, в частности в отопительных котельных на любом топливе

Изобретение относится к области экологии и может быть использовано при очистке технологических газов и воздуха от угольной пыли непосредственно у вытяжной трубы на последней стадии производственного процесса

Изобретение относится к устройствам для мокрой очистки газов

Изобретение относится к защите воздушного бассейна от промышленных выбросов, в частности для очистки загрязненного газа (воздуха) от взвешенных частиц, аэрозолей и других примесей и может быть использовано во всех отраслях народного хозяйства

Изобретение относится к области пылеулавливания и может быть использовано в различных отраслях промышленности для улавливания тонкой пыли

Изобретение относится к ремонту машин, в частности к окрасочному производству, к аппаратам, фильтрующим или очищающим воздух, особенно к аппаратам передвижным, предназначенным для использования при ремонте автомобилей

Изобретение относится к технике очистки газовых выбросов в атмосферу токсичных газообразных компонентов и может найти применение в массообменных процессах, в химической, нефтеперерабатывающей, коксохимической, металлургической и других отраслях народного хозяйства

Изобретение относится к технике очистки газовых выбросов от пыли и токсичных газообразных компонентов и может быть использовано в электронной, химической, металлургической, горнодобывающей, пищевой, фармацевтической и других отраслях промышленности

Изобретение относится к средствам очистки и тепломассообменной обработки газов

Изобретение относится к средствам очистки и тепломассообменной обработки газов

Изобретение относится к очистке газов от твердых микровключений и может быть реализовано в химической, микробиологической и других отраслях промышленности, в которых используется процесс тепломассообмена

Изобретение относится к способу и устройству для удаления двуокиси серы из газа, предпочтительно топочного газа, с помощью водной суспензии абсорбента, предпочтительно известняка

Изобретение относится к оросительному мокрому сепаратору для очистки отработанного воздуха

Изобретение относится к области абсорбции газов и паров жидкостями в перерабатывающей промышленности

Изобретение относится к технике мокрой очистки газов от взвешенных частиц, пыли и других примесей и может быть использовано для очистки запыленного воздуха и/или отходящих производственных газов в различных отраслях промышленности

Изобретение относится к экологии
Наверх