Способ измерения оптического сигнала при использовании амплитудных оптических датчиков

 

Использование: изобретение относится к области волоконной оптики и может быть использовано в области разработки измерительных устройств. Сущность заключается в том, что с целью повышения достоверности измерения оптический сигнал подают импульсно. Перед датчиком его разделяют на два сигнала. Один из сигналов пропускают через датчик, где он претерпевает изменение от изменения контролируемого параметра, а другой - через линию задержки. По отношению величин сигналов судят об изменении параметра. 2 ил.

Изобретение относится к области волоконной оптики и наиболее эффективно может быть использовано при работе с амплитудными оптическими датчиками, в которых состояние контролируемого параметра определяют по изменению амплитуды оптического сигнала, подаваемого на указанный датчик.

Известен способ [1] при котором амплитуду оптического сигнала, прошедшего через амплитудный оптический датчик, сравнивают с амплитудой исходного сигнала и по ее изменению определяют изменение контролируемого параметра. Недостатком данного способа является то, что изменение интенсивности оптического сигнала в результате нестабильности излучателя или изменения пропускания оптической линии приводит к ошибке, которая может быть весьма значительной.

Наиболее близким к предлагаемому является способ [2] при котором оптический сигнал пропускают через оптическую линию и амплитудный оптический датчик. При этом исходный сигнал состоит из излучения с длинами волн 1 и 2, полученными из одного источника, и выбранными таким образом, что изменение контролируемого параметра изменяет амплитуду излучения только на одной длине волны, например 1, а изменение пропускания оптической линии и нестабильность источника излучения в равной мере отражаются на излучении с длиной волны 1 и 2. Таким образом, зная исходное отношение мощностей К излучения на длине волны 1 и 2; , где мощность излучения на длинах волн 1 и 2, можно определить относительное изменение сигнала при прохождении излучения на тестирующей длине волны через амплитудный оптический датчик с исключением ошибки, связанной с нестабильностью (дрейфом мощности) источника излучения и изменением пропускания оптической линии. В этом случае Здесь Р коэффициент, отражающий изменение мощности излучения за счет нестабильности излучателя и изменения пропускания оптической линии; S коэффициент, вызывающий изменение мощности излучения на длине волны 1 в датчике за счет изменения контролируемого параметра; мощности излучения на выходе из оптической системы; мощности излучения на входе на соответствующих длинах волн.

Недостатком данного способа является невозможность использования монохроматического источника излучения. Кроме того, применение данного способа возможно только в случае, когда изменение контролируемого параметра не влияет на изменение интенсивности излучения на длине волны 2, что сужает функциональные возможности способа.

Технический результат, заключающийся в получении достоверных показаний изменения мощности излучения проходящего через амплитудный оптический датчик при использовании монохроматического излучения, достигается заявляемым способом.

Сущность заявляемого способа состоит в том, что оптический сигнал пропускают через оптическую линию и амплитудный оптический датчик, при этом оптический сигнал подают в виде импульсов длительностью и периодом T = n, где n > 2, при этом перед амплитудным оптическим датчиком оптический сигнал разделяют на два сигнала, один из которых пропускают через амплитудный оптический датчик, а другой через линию задержки со временем задержки to, где (T-)>to>, а об изменении контролируемого параметра судят по отношению амплитуд импульсов, прошедших через амплитудный оптический датчик и линию задержки.

Указанная совокупность признаков позволяет использовать монохроматический источник излучения и в то же время исключить ошибку определения состояния контролируемого параметра, возникающую вследствие нестабильность источника излучения и изменения пропускания оптической линии.

Способ поясняется чертежами, где изображено: на фиг. 1 блок-схема устройства для осуществления способа; на фиг. 2а график импульсной подачи оптических сигналов; на фиг. 2б график оптических сигналов, направляемых на амплитудный оптический датчик и в линию задержки; на фиг. 2в график оптических сигналов, прошедших через амплитудный оптический датчик и через линию задержки; на фиг. 2г график оптических сигналов, прошедших через амплитудный оптический датчик и через линию задержки при условии изменения интенсивности света.

В соответствии с фиг. 1 устройство содержит источник излучения 1, оптическую линию 2, разветвители 3, 4, амплитудный оптический датчик 5, линию задержки 6, фотоприемник 7.

На фиг. 2 показаны: I и t обозначения координат, где I мощность оптического сигнала, t - время.

Io исходная мощность оптического излучения, попадающего в оптическую линию 2 из источника излучения 1.

I1 и I2 мощности разделенных разветвителем 3 оптических сигналов, направляемых в датчик (I1) и в линию задержки 6 (I2).

I3 мощность оптического сигнала, прошедшего через датчик.

I4 мощность оптического сигнала, прошедшего через датчик при условии изменения интенсивности света источника излучения и пропускания оптической линии.

I5 мощность оптического сигнала, прошедшего через линию задержки при условии изменения интенсивности света источника излучения и пропускания оптической линии.

to время задержки.

Т период следования импульсов.

длительность импульса.

Способ реализуется блок-схемой следующим образом.

Оптический сигнал Io (фиг. 2а), излучаемый источником 1, попадает в оптическую линию 2 и разделяется на сигналы I1 и I2 разветвителем 3. Сигнал I1, подается на амплитудный оптический датчик 5. Сигнал I2 подается в линию задержки 6. Сигнал I1, пройдя через датчик 5, превращается в сигнал I3, сигнал I2, проходя через линию задержки 6, не изменяется по мощности, но появляется с задержкой to. В случае дрейфа интенсивности источника излучения 1 или изменения степени пропускания оптической линии связи 2 сигнал I3 превращается в сигнал I1, а сигнал I2 в сигнал I5.

Импульсная подача позволяет разделить исходный сигнал Io на два I1 и I2, пропустить их по разным каналам, а именно через датчик 5 и через линию задержки 6. Очевидно, что сигнал, прошедший через линию задержки 6, не изменяет своей мощности, в то время как мощность сигнала I1, прошедшего через датчик 5, меняется с I1 до I3 при этом I3 SI1 где
S определяется значением контролируемого параметра.

Дрейф мощности источника излучения 1 и изменение пропускания оптической линии 2 в равной степени сказываются на изменении величины сигналов I3 и I2, которые принимают значение соответственно I4 и I5 т.е.

I4 rI3
I5 rI2,
где r коэффициент, определяющийся дрейфом интенсивности источника излучения 1 и изменением пропускания оптической линии 2.

Сигналы I4 и I5 подаются на фотоприемник 7 через разветвитель 3. Периодичность Т подачи импульсов Io выбирается из соотношения T = n,, где n > 2, а to выбирается из соотношения (T-)>to>..

Таким образом регистрируют два сигнала I4 и I5. Состояние контролируемого параметра определяют из отношения:

где К коэффициент, являющийся характеристикой разветвителя 3.

Таким образом, способ позволяет исключить ошибку определения состояния контролируемого параметра, возникающую в результате дрейфа мощности источника излучения и изменения пропускания оптической линии, поскольку отношение I4/I5 от этих параметров не зависит.

Кроме того, способ позволяет использовать монохроматический источник излучения, например лазерный генератор. В итоге он становится пригодным для работы с амплитудными оптическими датчиками, в которых изменение контролируемого параметра влияет на изменение мощности оптического излучения во всем спектральном диапазоне.


Формула изобретения

Способ измерения оптического сигнала при использовании амплитудных оптических датчиков, включающий последовательную подачу оптического сигнала в оптическую линию и амплитудный оптический датчик и проведение измерений по значению контролируемого параметра, отличающийся тем, что оптический сигнал подают в оптическую линию в виде импульсов, длительностью с периодом T = n где n > 2, при этом перед амплитудным оптическим датчиком оптический сигнал разделяют на два сигнала, один из которых пропускают через амплитудный оптический датчик, а другой через линию задержки с временем задержки t0, где (T-) > to> , и определяют значение контролируемого параметра по отношению амплитуд импульсов, прошедших через амплитудный оптический датчик и линию задержки.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к дистанционным методам диагностики

Изобретение относится к области контрольно-измерительной техники и дистанционным бесконтактным способам исследования элементного состава вещества

Изобретение относится к лазерной оптике больших интенсивностей

Изобретение относится к квантовой оптике и спектроскопии и элементному анализу, связанным с резонансным взаимодействием лазерного излучения с веществом при определении в нем следовых количеств и микропримесей элементов, и может быть использовано в различных областях народного хозяйства и в научных исследованиях для проведения прямого чувствительного (10-7 - 10-10 мас.% и ниже) элементного анализа природных объектов и высокочистых материалов

Изобретение относится к измерительным приборам, в частности молочной промышленности

Изобретение относится к пищевой промышленности и может найти применение в системах контроля качества спиртоводочных изделий для их идентификации

Изобретение относится к созданию методов и аппаратурных средств агромониторинга, а именно к построению систем контроля качества агропромышленной продукции, в частности алкоголя

Изобретение относится к спектральному анализу

Изобретение относится к области неразрушающего контроля

Изобретение относится к импульсному лазеру, используемому для количественного спектрального анализа галогенсодержащих неметаллических или максимум частично металлических веществ, связанному с съемочным приспособлением, спектрометром и камерой ПЗС, причем интенсивность света, испускаемого, по меньшей мере, одним дискообразным участком конуса расширения плазмы, запоминают, суммируют и оценивают, причем предпочтительно определяют градиенты температуры и плотности

Изобретение относится к средствам мониторинга окружающей среды и может найти применение в системах, осуществляющих экспресс-контроль качества воздуха в вентиляционных каналах зданий и сооружений на предмет выявления в них распыленных мелкодисперсных органических порошков и аэрозолей, содержащих патогенные микроорганизмы

Изобретение относится к технике лабораторных исследований процессов кристаллообразования в сахарсодержащих растворах при их охлаждении и может быть использовано в сахарной промышленности
Наверх