Интерференционный дилатомер для измерения тклр малорасширяющихся твердых материалов

 

Использование: в области анализа температурного коэффициента линейного расширения /ТКЛР/ малорасширяющихся твердых материалов и может быть использовано для контрольных и исследовательских целей в любых отраслях народного хозяйства, в частности в коксохимической и стекольной отраслях промышленности. Устройство позволяет с высокой точностью, оперативно, на образцах простой конфигурации производить определение малых значений ТКЛР /210-8-510-6K-1/. Сущность изобретения заключается в том, что интерференционный дилатометр содержит источник света - лазер 1, оптическую систему 2 для формирования параллельного пучка монохроматического света, печь-термостат 14, устройство для регистрации интерференционной картины, держатель 13 образца, выполненный из материала с известным ТКЛР, интерферометр Физо. Причем отражающими поверхностями интерферометра Физо являются верхний торец держателя 13 и нижняя поверхность интерференционной пластины 12. Две опоры для интерференционной пластины имеются на держателе 13, а третьей опорой служит установленный в держателе 13 образец. Устройство снабжено клиновидной регулировочной пластиной 4, используемой в качестве нижней опоры образца, с возможностью вращения вокруг своей оси и регулировки тем самым угла между нижней поверхностью интерференционной пластины и верхним торцом держателя. Две опоры для интерференционной пластины на верхнем торце 13 держателя составляют с ним единое целое. 2 ил., 2 табл.

Изобретение относится к анализу температурного коэффициента линейного расширения (ТКЛР) малорасширяющихся твердых материалов и может быть использовано для контрольных и исследовательских целей в любых отраслях народного хозяйства, в частности в коксохимической и стекольной отраслях промышленности.

Выбор метода определяется диапазоном абсолютных значений измеряемых величин ТКЛР. Измерение очень малых значений ТКЛР (<110-6K-1) обычно проводится одним из наиболее точных дилатометрических методов интерференционным. Принципиальная конструкция самого интерференционного дилатометра, в особенности, держателя образца, существенным образом влияет на экспрессность измерений, степень автоматизации, точность, диапазон измеряемых величин.

Известен прецизионный лазерный дилатометр, содержащий стабилизированный одночастотный лазер, оптическую систему, оптический вентиль, интерферометр Фабри-Перо, несущая конструкция резонатора которого выполнена из исследуемого материала, фотоприемник лазерного излучения и электронный блок (Авт.св. СССР N 379862, кл. G 01 N 25/16, 1973).

Известен интерференционный дилатометр, содержащий установленный по ходу луча источник монохроматического излучения с коллиматором, интерферометр Физо, фотоэлектрический преобразователь, модулятор с подвижным зеркалом и неподвижную диафрагму, отличающийся тем, что, с целью повышения точности измерений, неподвижная диафрагма и подвижное зеркало модулятора установлены между коллиматором и распределителем [1] Недостатком указанных дилатометров является сложность формы образцов из исследуемых материалов и длительность их подгонки для проведения измерения.

В целях упрощения процесса измерения в современных дилатометрах для определения ТКЛР малорасширяющихся материалов используют метод сравнения с эталонном образцом, имеющим точно известную величину ТКЛР.

Наиболее близким техническим решением, выбранным в качестве прототипа, является высокочастотный образцовый интерференционный дилатометр, содержащий источник монохроматического света, оптическую систему, печь-термостат, систему регистрации, образец, интерференционную пластину и держатель образца, выполненный из материала с известным ТКЛР, причем верхний торец держателя служит нижней отражающей поверхностью интерферометра Физо, опорами интерференционной пластины являются образец и укладываемые на держатель две тонкие кварцевые нити [2] Недостатком этого устройства являются высокие требования к точности подгонки длины испытуемого образца к длине эталона, так, чтобы угол между верхней и нижней интерференционными поверхностями составлял 3-6'.

Технической задачей изобретения является обеспечение высокой точности измерения ТКЛР в широком интервале значений при относительно малых габаритах с высокой производительностью.

Технический результат достигается тем, что в интерференционном дилатометре для измерения ТКЛР малорасширяющихся твердых материалов, содержащем держатель образца, выполненный из материала с известным ТКЛР, печь-термостат для нагрева образца, устройство регистрации интерференционной картины, интерферометр Физо, включающий оптически сопряженные источник света в виде лазера, оптическую систему для формирования параллельного пучка монохроматического света, первый отражающий элемент в виде пластины и второй отражающий элемент, при этом вторым отражающим элементом является торец держателя образца, обращенный к отражающей пластине, а также два опорных элемента для отражательной пластины, размещенных на торце держателя образца, обращенного к отражательной пластине, и опорный элемент для образца, размещенный с противоположной стороны держателя, опорный элемент для образца выполнен в виде клиновидной регулировочной пластины, установленной с возможностью поворота вокруг своей оси и регулировки угла между поверхностью отражающей пластины и торцом держателя образца, обращенным к этой пластине, и два опорных элемента для отражательной пластины выполнены в виде выступов на торце держателя.

На фиг.1 представлена принципиальная оптическая схема интерференционного дилатометра для измерения ТКЛР малорасширяющихся твердых материалов.

Свет от лазера 1 через оптическую систему 2, включающую расширитель пучка 3, конденсор 5, зеркала 4, 7, конденсор 5, диафрагму 6, объектив 9 и экраны 10, 11, попадает на держатель 13 образца с интерференционной пластиной 12, находящейся в печи-термостате 14. Лучи, отражаясь от верхней поверхности держателя 13 и нижней поверхности интерференционной пластины 12, образующих интерферометр Физо, интерферируют, создавая интерференционную картину. Изображение интерференционной картины с помощью светоделительной пластины 8 и оптического устройства 15, включающего диафрагму 16, зеркало 17, объектив 18 и куб-призму 19, передается в канал регистрации 20.

На фиг. 2 изображен держатель образца с установленной интерференционной пластиной, где 1 интерференционная пластина, 2 держатель образца, 3 - образец, 4 клиновидная регулировочная пластина, 5 опоры для интерференционной пластины, А верхний торец держателя 2, О ось вращения регулировочной пластины 4, С точка опоры для интерференционной пластины на образце, В-В линия, нанесенная на полированном верхней торце А держателя 2.

Образец 3 для измерения ТКЛР выполняется в виде цилиндра диаметром чуть меньше отверстия в держателе образца. Возможен вариант, когда испытуемый образец представляет из себя пластину, достаточно прочно входящую в держатель образца. Вершина образца выполняется в виде полусферы и служит одной из точек опоры С интерференционной пластины. Двумя другими точками опоры этой пластины служат пирамидальные либо конусоидальные выступы 5 на поверхности держателя образца, составляющие с ним единое целое.

Верхний торец держателя образца одновременно представляет собой вторую интерференционную пластину и должен быть отполирован не хуже 1/20 длины волны используемого монохроматического излучения.

Нижняя сферическая поверхность образца 3 опирается на клиновидную регулировочную пластину 4. Вращение пластины 4 вокруг оси О изменяет (поднимает или опускает) положение образца 3 по отношению к держателю 2, изменяя угол между нижней поверхностью интерференционной пластины 1 и верхним торцом А держателя 2, меняя тем самым интерференционную картину.

Вращение пластины позволяет плавно регулировать величину угла между нижней поверхностью интерференционной пластины и верхним торцом держателя, который для обеспечения точности измерений должен быть установлен в пределах 3-6', что может быть осуществлено в прототипе только очень точной подгонкой длины образца.

В устройстве соответствие длины образца и держателя обеспечивается путем использования набора клиновидных регулировочных пластин различной толщины, что позволяет использовать для измерения образцы, различные по длине, без точной подгонки, сокращая время подготовки образца.

Предлагаемый механизм вращения дополнительно позволяет совмещать максимум или минимум интерференционной полосы с нулевой отметкой шкалы, что также облегчает счет полос и повышает точность измерений.

Использование держателей образца с различными точно известными ТКЛР позволяет расширить диапазон измеряемых значений ТКЛР с сохранением точности измерения.

Удобство и простота предложенного устройства позволяет при относительно малых габаритах с высокой точностью определять ТКЛР малорасширяющихся твердых материалов в ручном режиме (визуально) через окуляр, полуавтоматически с использованием осциллографа или автоматически, с выводом результатов на ЭВМ.

Измерение ТКЛР производится следующим образом: образец 3 опускают в отверстие в держателе образца 2, устанавливают интерференционную пластину 1. Наблюдая в окуляр, вращением регулировочной пластины 4 вокруг оси О добиваются необходимого числа и расположения интерференционных полос в поле зрения. Процесс измерения в заявляемом решении осуществляется путем подсчета числа полос (N1) при фиксированной начальной температуре (T1) после автоматической термостабилизации испытуемого образца с точностью не ниже 0,2 K по объему образца и числа полос (N2) после подъема температуры образца до необходимой величины (T2) и термостабилизации. Измеряемый ТКЛР определяется по формуле где ТКЛР исследуемого материала; aд ТКЛР держателя образца; пл ТКЛР регулировачной пластины; длина волны излучения; Lпл толщина регулировочной пластины; L0 длина образца;
K=DО/D;
D0 расстояние от точки опоры на образце до линии, соединяющей точки опоры на держателе;
D расстояние от линии, соединяющей точки опоры на держателе, до линии, нанесенной на полированный верхний торец держателя;
T1 и T2 начальная и конечная температура измерения;
N1 и Т2 число полос на базе D при температурах T1 и T2;
DC поправка на изменение показателя преломления воздуха при изменении температуры от T1 до T2.

Пример 1. В табл.1 приведены результаты аттестации заявляемого интерференционного дилатометра. Проведены измерения ТКЛР в интервале температур 30-100oC с образцовой меры 2-го разряда из легированного кварцевого стекла.

Анализ результатов показывает, что различие измеренного ТКЛР (изм) с истинным () составляет 0,110-8K-1.

Пример 2. Проведены измерения ТКЛР образца графита N 912445, предоставленного фирмой "Conoco" (США) ( 0,11010-6K-1), изготовленного на основе игольчатого кокса. Результаты приведены в табл.2.

Использование интерференционного дилатометра обеспечивает по сравнению с существующими увеличение производительности, сокращая время подготовки образца, увеличение точности измерения за счет оптимизации числа интерференционных полос плавным вращением клиновидной регулировочной пластины и использования стационарных опор для интерференционной пластины, а также позволяет расширить диапазон измеряемых значений ТКЛР за счет использования держателей образца с различными точно известными значениями ТКЛР, при этом используется держатель с ТКЛР, близким к ТКЛР образца.


Формула изобретения

Интерференционный дилатометр для измерения ТКЛР малорасширяющихся твердых материалов, содержащий держатель образца, выполненный из материала с известным ТКЛР, печь-термостат для нагрева образца, устройство регистрации интерференционной картины, интерферометр Физо, включающий оптически сопряженные источник света в виде лазера, оптическую систему для формирования параллельного пучка монохроматического света, первый отражающий элемент в виде пластины и второй отражающий элемент, при этом вторым отражающим элементом является торец держателя образца, обращенный к отражающей пластине, а также два опорных элемента для отражающей пластины, размещенных на торце держателя образца, обращенном к отражающей пластине, и опорный элемент для образца, размещенный с противоположной стороны держателя, отличающийся тем, что опорный элемент для образца выполнен в виде клиновидной регулировочной пластины, установленной с возможностью поворота вокруг своей оси и регулировки угла между поверхностью отражающей пластины и торцом держателя образца, обращенным к этой пластине, а два опорных элемента для отражающей пластины выполнены в виде выступов на торце держателя.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3

NF4A Восстановление действия патента Российской Федерации на изобретение

Номер и год публикации бюллетеня: 15-2004

Извещение опубликовано: 27.05.2004        



 

Похожие патенты:

Изобретение относится к теплофизическим измерениям, в частности измерений коэффициента теплового расширения p, а именно p проводящих жидкостей (здесь ; P давление; V объем; Т температура (или плотность), и может быть применено при исследовании материалов в тех областях состояний, где p проявляет сильную зависимость от температуры, например вблизи фазовых переходов

Изобретение относится к области исследования теплофизических характеристик и механических свойств упругих однородных изотропных материалов путем приложения к ним статических нагрузок и предназначено для определения физико-механических и теплофизических свойств на одном образце

Изобретение относится к измерительной технике и может найти применение при разработке конструкции и технологии производства элементов, чувствительных к изменению температуры, характеристической до максимальной, при которой материал сохраняет упругие свойства

Изобретение относится к области металлургии в частности к регулированию процессов получения углеродных материалов

Изобретение относится к испытательной технике, а именно к способам дилатометрических испытаний

Изобретение относится к измерению относительных деформаций, возникающих во льду в результате технических и естественных нагрузок

Изобретение относится к области испытаний материалов с применением тепловых средств, а именно к области дилатометрии

Изобретение относится к области тепловых испытаний материалов, а именно к области дилатометрических измерений

Изобретение относится к контрольно-измерительной технике и может найти применение для бесконтактных исследований рельефа поверхности голографическими способами

Изобретение относится к контрольно-измерительной технике и может быть использовано для высокоточного бесконтактного определения расстояния между оптической и геометрической осями линз и расстояния между поверхностями линз

Изобретение относится к оптико-электронной прецизионной измерительной технике, допускающей прямой отсчет показаний механических смещений

Изобретение относится к оптической измерительной технике и предназначено для контроля качества оптических поверхностей и систем

Изобретение относится к измерительной технике, в частности к способам измерения структуры и динамики микрообъектов, а также к устройствам для его осуществления, и может быть использовано в биологии, физике твердого тела, микроэлектронике и т.д

Изобретение относится к измерительной технике и может быть использовано для контроля отклонений от плоскостности поверхности объекта в различных отраслях промышленности

Изобретение относится к голографической измерительной технике, предназначено для контроля оптических систем и может найти применение в оптическом приборостроении

Изобретение относится к измерительной технике, а более конкретно к интерферометрам, и может быть использовано для измерения линейных перемещений с высокой степенью точности в большом диапазоне измерительных величин в приборостроении, станкостроении, системах автоматизации и др

Изобретение относится к области измерительной техники и может быть использовано для измерения с высокой точностью показателей преломления изотропных и анизотропных материалов
Наверх