Устройство для магнитной обработки жидкости

 

Использование: изобретение относится к области обработки жидкости, а также сыпучих и газообразных сред и жидких растворов магнитными полями для изменения их технических характеристик, физических свойств, обессоливания, активации и очистки и может быть использовано в системах теплоснабжения, химической технологии, технологии обогащения минерального сырья, в нефтедобывающей и нефтеобрабатывающей промышленности, в строительстве для обработки растворов, в сельском хозяйстве и медицине. Сущность: устройство состоит из корпуса с прикрепленными к его концам конусными патрубками и из размещенных внутри корпуса постоянных магнитов, которые обращены друг к другу разноименными полюсами, причем торцевые поверхности каждой пары противостоящих магнитов расположены вплотную друг к другу, а их противоположные поверхности размещены вплотную к корпусу. Вдоль корпуса может быть установлено несколько таких секций постоянных магнитов. 1 з.п. ф-лы, 6 ил.

Изобретение относится к области обработки жидких, а также сыпучих и газообразных сред и жидких растворов магнитными полями для изменения их технических характеристик, физических свойств, обессоливания, активации, изменения жесткости, очистки и может быть использовано в системах теплоснабжения, химической технологии, технологии обогащения минерального сырья, в нефтедобывающей и нефтеобрабатывающей промышленности, в строительстве для обработки растворов, в сельском хозяйстве и медицине.

Известно устройство для магнитной обработки воды, включающее корпус с входными и выходными патрубками и расположенными на его поверхности друг против друга плоскими парными магнитами с противоположными полюсами и чередующимся направлением магнитного поля [1] Недостатками этого устройства являются: низкая степень обработки материала и малая длительность сохранения эффекта намагниченности из-за того, что обрабатываемый материал на каждой паре плоских магнитов обрабатывается магнитным полем одного направления, на следующей паре магнитов перемагничивается на противоположное направление, а на выходе из устройства жидкость во всем своем объеме остается намагниченной только в одной полярности; при этом энергия запасенного остаточного магнитного поля жидкости стремится к рассеиванию и деформации остаточного магнитного поля за счет собственных внутренних сил магнитного отталкивания между однонаправленно намагниченными элементами объема жидкости (разного знака намагниченность противоположных поверхностей потока жидкости практически полностью компенсируется на выходе из устройства); практически полностью исключается обработка жидкости биологически активной компонентой скалярного магнитного поля.

Наиболее близким по технической сущности и достигаемому результату к заявленному устройству является аппарат для магнитной обработки жидкости, состоящий из цилиндрического корпуса с крышками-фланцами и патрубками для ввода и вывода обрабатываемой жидкости, внутри которого установлены сплошные перегородки с кольцевым зазором и перегородки с отверстием по центру, причем между перегородками размещены плоские постоянные магниты с разноименными друг другу полюсами [2] Недостатком прототипа является: низкая остаточная намагниченность обрабатываемого материала и малая длительность сохранения эффекта намагниченности, т.к. в процессе обработки сред происходит чередование магнитного поля и его саморассеивание.

Основной технической задачей устройства является усиление омагничивания обрабатываемой среды за счет повышения эффективности использования магнитного поля. Омагниченной водой, полученной предложенным способом и способом-прототипом, были обработаны семена пшеницы. Процент прорастания семян пшеницы, обработанной предложенным способом, на 40% выше, чем в прототипе. Проведенные эксперименты также показали более высокую эффективность предложенного способа для устранения накипи, обессоливания воды.

Поставленная задача достигается тем, что в предлагаемом устройстве для магнитной обработки жидкости, включающем корпус для ввода и вывода обрабатываемой жидкости, в котором размещены постоянные магниты, обращенные друг к другу разноименными полюсами, согласно предложенного решения торцевые поверхности каждой пары противостоящих магнитов расположены вплотную друг к другу, а их противоположные поверхности размещены вплотную к корпусу. Кроме того, вдоль корпуса установлено несколько секций постоянных магнитов, обращенных друг к другу разноименными полюсами, причем секции отделены друг от друга немагнитным материалом.

На фиг. 1, показана конструкция предлагаемого устройства для магнитной обработки жидкости с одной парой плоских магнитов; на фиг.2 то же, вид сбоку; на фиг. 3 сечение А-А на фиг.1; на фиг.4 представлен вариант устройства, в котором размещены две пары магнитов; на фиг.5 вариант устройства, в котором магниты выполнены из полуколец; на фиг.6 вариант устройства, выполненный по п.2 формулы изобретения, т.е. вариант устройства, в котором вдоль корпуса установлено несколько секций постоянных магнитов, в частности плоских.

Устройство состоит из корпуса 1 с прикрепленными к его концам конусными патрубками 2 и из размещенных внутри корпуса постоянных магнитов 3, которые обращены друг к другу разноименными полюсами, причем торцевые поверхности каждой пары противостоящих магнитов расположены вплотную друг к другу, а их противоположные поверхности размещены вплотную к корпусу. Перед магнитами 3 и после магнитов в корпусе 1 установлены обтекатели 4 для придания ламинарности потоку обрабатываемой среды.

Для усиления эффекта омагничивания в корпусе может быть установлено в одном сечении две пары магнитов, как это показано на фиг.4, или пара магнитов, выполненных в виде полуколец (фиг.5), причем в этом варианте обрабатываемая среда пропускается через внутреннюю трубу 5, выполненную из немагнитного материала. Кратное усиление эффекта обработки достигается при последовательной установке в корпусе 1 нескольких секций постоянных магнитов. На фиг. 6 показан такой вариант при использовании пары плоских магнитов. Но возможно использование и других вариантов секций, в т.ч. приведенных на фиг. 4 и 5. При многосекционном исполнении предложенного устройства между секциями необходим воздушный зазор или перегородка из немагнитного материала.

Работа устройства для магнитной обработки жидкости осуществляется следующим образом.

Ламинарный поток жидкости через входной конический патрубок 2 корпуса 1 полностью разделяется на два потока двумя плоскими скрепленными друг с другом и с корпусом 1 магнитами 3, передние и задние стороны которых снабжены обтекателями 4 для сохранения ламинарности потока с одной и другой стороны плоских магнитов. Противоположно направленные магнитные поля с одной и другой рабочей поверхности магнитов ориентированы так, что после прохождения двух разделенных потоков жидкости над противоположными рабочими поверхностями магнитов 3 и задних обтекателей 4 и последующим их соединением, остаточная намагниченность одного из потоков стремится закоротиться на магнитном потоке другого за счет действующих между ними сил магнитного притяжения, что способствует плотной концентрации магнитной энергии замагниченного потока жидкости.

При экспериментальных микробиологических исследованиях по изучению влияния магнитного поля на репродуктивность кишечной палочки выявлено, что применение предложенного нами устройства имеет эффективность на 1-3 порядка выше, чем аппарат для магнитной обработки, выполненный в соответствии с конструкцией прототипа.

Кроме того, применение предложенного нами устройства позволило получить почти на 40% выше процент прорастания семян пшеницы за одну неделю, чем при использовании воды, обработанной устройством-прототипом. Также были проведены эксперименты по устранению накипи и обессоливанию воды.

Формула изобретения

1. Устройство для магнитной обработки жидкости, включающее корпус для ввода и вывода обрабатываемой жидкости, в котором размещены постоянные магниты, обращенные друг к другу разноименными полюсами, отличающееся тем, что торцевые поверхности каждой пары противостоящих магнитов расположены вплотную одна к другой, а их противоположные поверхности размещены вплотную к корпусу.

2. Устройство по п.1, отличающееся тем, что вдоль корпуса установлено несколько секций постоянных магнитов, обращенных одна к другой разноименными полюсами, причем секции отделены одна от другой немагнитным материалом.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6



 

Похожие патенты:

Изобретение относится к технике обработки жидкостей и может быть использовано для замедления процесса испарения влаги из среды посредством дополнительного воздействия магнитным полем на продукт в отраслях промышленности, сельского хозяйства, быту и т.д

Изобретение относится к электрохимическим способам очистки промышленных сточных вод от жира, нефтепродуктов, СПАВ, взвешенных веществ и др

Изобретение относится к устройствам для электрохимической обработки жидкостей, в частности - к прикладной электрохимии

Изобретение относится к способу очистки водных растворов от ионов тяжелых металлов и радиоактивных веществ

Изобретение относится к способу очистки водных растворов от ионов тяжелых металлов и радиоактивных веществ

Изобретение относится к области получения фильтрующих материалов и использования этих материалов в фильтрах для очистки сточных нефтесодержащих вод нефтяного производства от нефтепродуктов

Изобретение относится к электрохимической обработке водных растворов и получения газов, а именно к электрохимической установке со сборными и распределительными коллекторами анолита и католита, при этом анодные и катодные камеры выполнены в форме параллелограмма, в верхних и нижних углах которого для сообщения соответственно со сборными и распределительными коллекторами устроены каналы, обеспечивающие направление движения электролитов в анодных камерах справа-наверх-влево, а в катодных камерах - слева-наверх-вправо, и выполненные в виде ограниченного пространства, осуществляющего неполное сжатие и расширение потока электролита за счет того, что одна сторона канала представляет собой прямую, являющуюся продолжением боковой стенки камеры до пересечения со сборным или распределительным коллектором в точке прохождения радиуса коллектора R, перпендикулярного этой боковой стенке, вторая сторона канала изготовлена в виде полукруга, соединяющего сборный или распределительный коллектор со второй боковой стенкой камеры в точке пересечения полукруга с радиусом коллектора R, параллельным прямой стороне канала, причем радиус полукруга r и радиус сборного или распределительного коллектора R связаны соотношением R > r > 0

Изобретение относится к обработке воды, а именно к способу обеззараживания воды, основанному на электролизе, при этом обработку исходной воды осуществляют одновременным воздействием на нее в анодных камерах двух двухкамерных электролизеров с катионообменными мембранами атомарного кислорода, угольной кислоты, а также гидратированных ионов пероксида водорода с введением в анодную камеру первого электролизера водного раствора гидрокарбоната натрия с рН = 10,5...11,5, в анодную камеру второго электролизера водного раствора гидрокарбоната натрия с рН = 8,5...9,0, получением после анодной камеры первого электролизера анолита с рН = 3-4, последующей доставкой его в обе камеры второго электролизера и получением после катодной камеры второго электролизера питьевой воды с рН = 7,0-8,5, при этом получаемый во втором электролизере анолит смешивается с исходной водой перед введением в камеры первого электролизера, а католит после первого электролизера отводится из устройства
Наверх