Способ получения первапорационной композиционной полимерной мембраны

 

Использование: пищевая, химическая промышленность, биотехнология, медицина, для дегидратации водно-органических смесей методом первапорации и газоразделения. Сущность изобретения: для мокрого формования микропористой подложки используют 8-11%-ный раствор полиамидоимида с = 1,2-2,2 дл/г на основе 4-хлорформил- N,n-(хлорформилфенил) фтальимида и 4,4'-диаминодифенилового эфира в апротонном полярном растворителе, а поверхностный диффузионный слой формируют из 1-5%-ного раствора в хлороформе или метиленхлориде полиэфиримидов с = 0,1-1,1 дл/г на основе диангидрида бис-(3,4-дикарбоксифенокси)бензола и ароматических диаминов из ряда: 4,4'-бис-(4"-аминофенокси)дифенилсульфон, 4,4'-бис-(4"-аминофенилтио)дифенилоксид, 2,2-бис [4-аминофенокси)фенил]пропан. 2 табл.

Изобретение относится к физической химии высокомолекулярных соединений, конкретно к способу получения композиционных двухслойных полимерных мембран для дегидратации водно-спиртовых смесей методом первапорации. Целевые мембраны могут быть применены также для эффективного газоразделения.

Изобретение может быть использовано в пищевой, химической промышленности, биотехнологии и медицине.

Предлагаемым способом получают композиционные двухслойные мембраны, состоящие из микропористой полимерной подложки, на поверхности которой сформирован диффузионный слой из полимера другой химической структуры, при этом полимеры, образующие подложку и поверхностный диффузионный слой, относятся к классу полигетероариленов.

Термины и сокращения, использованные в описании изобретения первапорция испарение жидкости через мембрану под воздействием вакуума; композиционная мембрана мембрана, состоящая из нескольких слоев, выполненных из полимеров разной структуры; микропористая подложка подложка мембраны с размером пор на поверхности 100 50 ; мокрое формование подложки процесс, включающий нанесение раствора полимера в органическом растворителе на отливочную основу, погружение основы с раствором полимера в осадительную ванну (вода, спирты, простые эфиры кислот), отделение подложки от основы, сушка подложки; поверхностный диффузионный слой верхний тонкий (d 0,1-2,0 мкм) бездефектный барьерный слой композиционной мембраны; пермеат состав, прошедший через мембрану в результате процесса разделения жидкостей; фактор разделения характеристика селективности, определен по формуле , где XA и XБ содержание воды (А) и спирта (Б) в пермеате (%), УA и УБ содержание воды (А) и спирта (Б) в исходной смеси (%);
удельная производительность дегидратации водно-спиртовых смесей с помощью композиционной мембраны количество жидкости, прошедшей через мембрану площадью 1 м2 за 1 ч;
полигетероарилены полимеры, содержащие в повторяющемся звене макромолекулы в качестве фрагментов ароматические карбоциклы (бензольные, нафталиновые) и гетероциклы (имидазольные, имидные и др.);
апротонный полярный растворитель растворитель из ряда, включающего N-метилпирролидон, N, N-диметилформамид, N, N-диметилацетамид;
d толщина слоя мембраны;
ММ молекулярная масса полимера;
характеристическая вязкость полимера, определенная при 20oC в растворе N-метилпирролидона.

Способы получения композиционных первопорционных полимерных мембран на основе полигетероариленов неизвестны.

При получении композиционных полимерных мембран для дегидратации водно-спиртовых смесей методом первапорации в качестве полимеров для формирования микропористых подложек, как правило, используют полиакрилонитрил, полиэфирсульфон, а в качестве полимеров для формования поверхностных диффузионных слоев сшиваемые после нанесения на подложку водорастворимые полимеры (поливиниловый спирт, полиакриловая кислота или их смеси, поли-4-винилпиридин и др.).

Так, известен способ получения двухслойной первапорационной мембраны путем формования на поверхности микропористой подложки из полиакрилонитрила диффузионного слоя из поливинилового спирта, который наносят на поверхность подложки в виде водного раствора, содержащего также сшивающий агент [1] Каскад из 8 мембранных модулей, полученных известным способом, используют для дегидратации водно-этанольных растворов с исходной концентрацией этанола 90% удельная производительность процесса при температуре 100oC составляет 0,5 кг/м2ч, содержание этанола в пермеате 3% Низкая производительность процесса и высокая температура эксплуатации ставит под сомнение целесообразность практического применения известных мембран.

Известен способ получения двухслойной первапорационной мембраны, включающий формование микропористой подложки из полиакрилонитрила или полисульфона с последующим нанесением на ее поверхность 7%-ного водного раствора смеси из поливинилового спирта (ММ 115103) и полиакриловой кислоты (ММ 250103), взятых в молярных соотношениях 1:1-4:1, в присутствии сшивающего агента для поливинилового спирта глутарового альдегида [2] При разделении смеси вода изопропанол исходного состава (%) 5:95 при 70oC с помощью мембраны, полученной известным способом, удельная производительность составляет 0,01-0,22 кг/м2ч при содержании спирта в пермеате 5,8% Недостатком известного способа является низкая производительность полученных с его помощью мембран.

Известен способ получения двухслойной первапорационной мембраны с диффузионным слоем из поли-4-винилпиридина (сшивающий агент дибромбутан) на поверхности микропористой подложки из полиакрилонитрила [3] При разделении смеси вода изопропанол исходного состава (%) 15:85 при 70oC удельная производительность процесса составляет 1,5-7,3 кг/м2ч. Однако следует отметить, что при достижении максимальной производительности процесса разделения содержание изопропанола в пермеате слишком велико 12%
Известен способ получения двухслойных первапорционных мембран, включающий формирование на поверхности микропористой подложки из карбоксилированного полиакрилонитрила диффузионного слоя из полимеров, содержащих в цепи кватернизованные атомы азота, например полимер, состоящий из повторяющихся звеньев общей формулы и образующий вследствие этого с полимером подложки полиионный комплекс [4] При разделении смеси вода этанол исходного состава (%) 5:95 при 70oC с помощью мембраны, полученной известным способом, удельная производительность процесса составляет 1 кг/м2ч при содержании этанола в пермеате 1% Эта мембрана является наиболее селективной из известных, но обладает относительно низкой производительностью в процессе разделения водно-органической смеси.

Известен способ получения первапорационных композиционных мембран мокрым формованием микропористой подложки из полисульфона с последующим формованием на подложке поверхностного диффузионного слоя последовательным нанесением на подложку водных растворов полиакриловой кислоты ММ 4(105-106) и полимера, содержащего в цепи кватернизованные атомы азота и образующего с полимером подложки полиионный комплекс [5] При разделении смеси вода этанол исходного состава (%) при 70oC с помощью мембраны, полученной известным способом, удельная производительность процесса составляет 2,17 кг/м2ч при содержании этанола в пермеате 0,5% при проведении процесса при 60oC удельная производительность составляет 1,63 кг/м2ч. В ряду известных аналогов композиционные мембраны данного типа имеют наиболее удачное сочетание высокой производительности и селективности в процессе дегидратации водно-спиртовых смесей. Вместе с тем, основным недостатком всех мембран дегидратирующего типа, в том числе и мембран, полученных по способу-прототипу, является резкое снижение производительности и потеря селективных свойств при снижении концентрации спирта в разделяемой смеси до 50% Кроме того, известные мембраны пригодны для разделения смесей одного типа, как правило, только водно-этальных, что существенным образом ограничивает области их применения.

Задачей изобретения являлась разработка способа получения высокопроизводительных и селективных первапорационных мембран с широким диапазоном по составу и типу разделяемых водно-спиртовых смесей.

Изобретение реализуется следующей совокупностью существенных признаков.

1. Мокрым формованием получают микропористую полимерную подложку.

2. Для мокрого формования микропористой подложки используют 8-11%-ный раствор полиамидоимида на основе 4-хлорформил-N, n- (хлорформилфенил)-фтальимида и 4,4'-диаминодифенилового эфира общей формулы:

1,2-2,2 дл/г (ММ (5-9)104)
в апротонном полярном растворителе.

3. Формируют на поверхности микропористой подложки диффузионный слой с помощью раствора полимера иной структуры.

4. Для формирования поверхностного диффузионного слоя используют 1-2%-ный растворы в хлорорганическом растворителе (хлороформ, метиленхлорид) полиэфиримидов на основе диангидрида 1,3-бис-(3,4-дикарбоксифенокси)бензола и ароматического диамина из ряда, включающего 4,4'-бис-(4"-аминофенокси)дифенилсульфон, 4,4'-бис-(4"-аминофенилтио)дифенилоксид, 2,2-бис-[(4-аминофенокси)фенил]пропан общей формулы

где 1. R -0-, R1 -SO2-, -C(CH3)2-
2. R -S-, R1 -0-
0,1 1,1 дл/г (ММ (2-8)105.

Отличительными от способа-прототипа существенными признаками изобретения являются признаки "2" и "4".

Анализ уровня науки и техники показал известность способов получения однослойных некомпозиционных первапорационных мембран асимметричной структуры на основе класса полигетероариленов: ароматических полиимида [6] полиамидоимида [7] полиэфиримида [8] За счет специфических приемов формования (концентрация и состав формовочного раствора, время и температура предформования, тип и температура осадительной ванны, температура постобработки) мембраны такого типа обладают неоднородной пористостью в объеме. На поверхности мембран, несмотря на то, что они сделаны из одного полимера, образуется более плотный, не имеющий четкой границы с остальной частью мембраны диффузионный слой, что позволяет использовать мембраны для разделения смесей жидкостей методом первапорации.

Так, японская фирма Ube Jnd. Ltd. использует для получения мембран асимметричной структуры (первапорационных и газоразделительных) полиимид на основе диангидрида 3,3', 4,4'-дифенилтетракарбоновой кислоты и 4,4'-диаминодифенилового эфира [6] При дегидратации смеси вода-этанол исходного состава (%) 20:80 при 100oC получают пермеат с содержанием этанола 1,3%
Известен также способ получения однослойных первапорационных мембран асимметричной структуры из полиамидоимида марки Torlon 4000 TF общей формулы:

При использовании этих мембран для разделения смеси вода-этанол исходного состава 5:95 при 60-75oC удельная производительность процесса составляет лишь 0,02 кг/м2ч при содержании этанола в пермеате 3%
Известен способ получения однослойных первапорационных мембран асимметричной структуры из ароматического полиэфиримида марки Ultem-1000 (General Electric Co.)общей формулы

Разделение смеси вода-изопропанол азеотропного состава с помощью мембран такого рода происходит при 40oC и остаточном давлении под мембраной 1 мм рт. ст. Удельная производительность дегидратации составляет 0,15 кг/м2ч.

Общим недостатком некомпозиционных мембран асимметричной структуры является сложность воспроизводства мембран одинакового качества, связанная главным образом с проблемой дефектности диффузионного слоя. Кроме того, при изготовлении мембран на основе полиимидов или их производных с использованием известных способов возникает ряд технологических трудностей. В связи с тем, что полиимиды плохо растворимы, формование мембран проводят при высоких температурах ( 100oC) из растворов полиимидов в агрессивных растворителях фенольного типа (например, в п-хлорбензоле). Если же мембрану формуют из растворимого форполимера полиамидокислоты, то необходима дополнительная стадия превращения форполимера в полиимид под воздействием высокой температуры (до 220oC) или химических реагентов.

Двухслойных композиционных первапорационных мембран на основе полиимидов и их производных не обнаружено. Хорошо известно, что полимеры класса полиимидов имеют плохую адгезию друг к другу и к материалам иной природы [9]
Ранее авторами изобретения был разработан способ получения двухслойной газоразделительной мембраны, состоящей из микропористой подложки из полиамидоимида на основе 4-хлорформил-N, n-(хлорформилфенил)-фтальимида и 4,4'-диаминодифенилового эфира и поверхностью диффузионного слоя из поли-2,6-диметилфениленоксида [10] Известное изобретение не порочит изобретательский уровень изобретения, так как наличие полиамидоимидной подложки в комбинации с поверхностным диффузионным слоем из поли-(2,6-диметилфениленоксида) отнюдь не гарантирует возможности использования такой газоразделительной мембраны и в качестве эффективной первапорационной мембраны для дегидратации водно-органический смесей. Действительно, специально проведенные авторами изобретения эксперименты показали, что мембраны, полученные известным способом, служат только для разделения газов и не могут быть использованы для целей разделения водно-органических смесей (см. пример 2-15 в табл. 2).

Таким образом, отсутствие информации о решениях, совпадающих с заявленным по совокупности существенных признаков, свидетельствует о соответствии заявляемого решения критерию "новизна".

Неочевидность получения композиционных первапорационных мембран из производных полиимида и наличие ранее неизвестной взаимосвязи "Полиимидная структура свойства (хорошая адгезия поверхностного диффузионного слоя к подложке, универсальность полученных в результате реализации заявляемого способа мембран по отношению к разным спиртам и количественным составам разделяемых смесей, возможность использования мембран для газоразделения, более низкая, чем у аналогов, температура процесса дегидратации)" свидетельствуют о соответствии заявляемого решения критерию "изобретательский уровень".

В качестве доказательства соответствия заявляемого решения критерию "промышленная применимость" приводим следующие примеры реализации изобретения.

Полиамидоимид на основе 4-хлорфирмил-N, n-(хлорформилфенил)фтальимида и 4,4'-диаминодифенилового эфира получен и охарактеризован согласно методике, описанной в [11]
.

В качестве отливочной основы могут быть использованы полированное стекло, сталь, нетканый материал.

Полиэфиримиды на основе диангидрида 1,3-бис-(3,4-дикарбоксифенокси)бензола и 4,4'-бис-(4"-аминофенокси)дифенилсульфона, 4,4'-бис-(4"-аминофенилтио)дифенилоксида, 2,2-бис[(4-аминофенокси)фенил] пропана получены и охарактеризованы по методике [12]
.

Толщины селективных диффузионных слоев в композиционных мембранах определены методом электронной микроскопии.

Средний диаметр пор на поверхности толщиной 0,2 мкм микропористых подложек определен методом ртутной порометрии.

Удельная производительность при разделении водно-спиртовых смесей определена весовым методом.

Состав пермеата оценен методами рефрактометрии и газовой хроматографии.

Пример 1 (табл. 1). 3 мл 10%-ного раствора полиамидоимида на основе 4-хлорформил-N, n-(хлорформилфенил)фтальимида и 4,4'-диаминодифенилового эфира с 2,1 дл/г в N-метилпирролидоне наносят из фильеры на полированную стеклянную пластинку (100х100) слоем толщиной 250 мкм и погружают пластинку с раствором полимера при комнатной температуре в осадительную ванну с дистиллированной водой. Через 2 ч отставшую от пластинки подложку промывают дистиллированной водой и высушивают при температуре 45 5oC, обдувая воздухом или в вакууме, до постоянной массы. Получают микропористую подложку толщиной 150 мкм и средним диаметром пор на поверхности 100 .

На горизонтально расположенную поверхность подложки наносят 3 мл (избыток) 1% -ного раствора полиэфиримида на основе диангидрида 1,3-бис-(3,4-дикарбоксифенокси)бензола и 4,4'-бис-(4"-аминофенокси)дифенилсульфона в хлороформе так, чтобы вся поверхность подложки была равномерно смочена раствором. Затем удаляют избыток раствора стеканием при вертикальном положении подложки и высушивают мембрану до постоянной массы при 45 5oC (обдув воздухом или в вакууме). Получают мембрану с толщиной селективного диффузионного слоя на подложке 1,5 мкм.

Разделение водно-спиртовых смесей проводится согласно методике, описанной в [13]
Над мембраной с рабочей площадью 110-3 м2, закрепленной и герметизированной в ячейке фланцевого типа, с помощью циркуляционного насоса прокачивают термостатированную разделяемую водно-спиртовую смесь заданного состава. Подмембранное пространство (включая приемник пермеата) вакуумируют до остаточного давления 2 мм рт. ст. и собирают пермеат в приемник, охлаждаемый жидким азотом.

Разделение смесей газов с помощью мембран, полученных согласно примеру 1, производится на хроматографической установке ПГД-1 [14] при перепаде давления по обе стороны мембраны 1 атм.

В табл. 1 приведены эксплуатационные характеристики мембраны, полученной согласно примеру 1, при разделении водно-спиртовых смесей и смесей газов.

Примеры 2-1 и 2-12 выполнены аналогично примеру 1.

Данные об условиях получения мембран и их эксплуатационных характеристиках представлены в табл. 2.

Средний диаметр пор на поверхности подложек и толщины поверхностных диффузионных слоев (50-200 и 1-2 мкм соответственно), гарантирующие воспроизводимость эксплуатационных характеристик мембран, регулируются заявляемыми концентрациями растворов полимеров.

Анализ приведенных в табл. 1 и 2 данных позволяет сделать следующие выводы.

1. С помощью предлагаемого способа можно получить композиционные двухслойные полимерные мембраны для а) дегидратации водно-спиртовых смесей, содержащих спирты C2-C4, в широком интервале исходных концентраций разделяемых веществ (5-95%), в том числе смесей азеотропного состава; б) разделения смесей газов. Следует отметить, что мембраны, полученные известными способами-аналогами и по способу-прототипу, в отличие от мембран, полученных предлагаемым способом, не являются универсальными для разных водно-спиртовых смесей, а разделяют, как было показано выше, водно-спиртовую смесь одного типа (как правило, водно-этанольную). Кроме того, известные мембраны теряют селективность и производительность при концентрации спирта в смеси 50% Известные мембраны не способны разделять газовые смеси.

2. Селективность и производительность целевых мембран в процессе дегидратации водно-спиртовых смесей превышает аналогичные показатели известных решений-аналогов и на уровне мембран, полученных по способу-прототипу (в области высоких исходных концентраций спирта в смеси). В области низких исходных концентраций спирта в смеси известные аналоги не работают, а мембраны, полученные предлагаемым способом, обладают хорошей селективностью и производительностью.

3. Процесс разделения водно-спиртовых смесей может быть проведен при 50oC, что на 20oC ниже, чем у мембран, полученных согласно способам-аналогам и прототипу.

Целевые мембраны могут быть использованы для концентрирования различных водно-спиртовых смесей в качестве альтернативы методу ректификации, при этом уровень энергозатрат снижается на 30-50% а также для разделения смесей газов.

Выход за рамки заявляемых интервальных параметров приводит к невозможности реализации изобретения.

Так, при снижении концентрации формовочного раствора полиамидоимида до 7% (пример 2-1 в табл.2) уменьшается механическая прочность подложки, возрастает размер пор на ее поверхности, что способствует затеканию формовочных растворов полиэфиримидов в поры и, как следствие, образованию дефектного поверхностного диффузионного слоя. Повышение концентрации формовочного раствора полиамидоимида до 12% (пример 2-5 табл.2) приводит к увеличению толщины подложки, уменьшению размера пор на ее поверхности, как следствие, резкому уменьшению производительности процесса дегидратации.

При использовании полимеров с более низкими значениями чем заявленные, не удается воспроизвести толщины подложки и поверхностного диффузионного слоя и, следовательно, эксплуатационные характеристики мембран. Полимеры с более высокими значениями чем заявленные, не известны.

При снижении концентрации растворов полиэфиримидов <1% (пример 2-7 в табл. 2) мембрана теряет селективные свойства из-за дефектности поверхностного диффузионного слоя. При увеличении концентрации растворов полиэфиримидов > 5% (пример 2-8 в табл. 2) резко падает производительность процесса дегидратации.


Формула изобретения

Способ получения первапорационной композиционной полимерной мембраны путем мокрого формования полимерной микропористой подложки с последующим формированием на ее поверхности диффузионного слоя из раствора полимера иной структуры, отличающийся тем, что для мокрого формования микропористой подложки используют 8 11%-ный раствор полиамидоимида с дл/г на основе 4-хлорформил-N,n-(хлорформилфенил)фтальимида и 4,4'-диаминодифенилового эфира в апротонном полярном растворителе, а поверхностный диффузионный слой формируют из 1 5%-ного раствора в хлороформе или метиленхлориде полиэфиримидов с дл/г на основе диангидрида бис-(3,4-дикарбоксифенокси)бензола и ароматических диаминов из ряда: 4,4'-бис-(4''-аминофенокси)дифенилсульфон, 4,4'-бис-(4''-аминофенилтио)-дифенилоксид, 2,2-бис[(4-аминофенокси)фенил]пропан.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к получению композиционных двухслойных полимерных мембран для дегидратации водно-органических смесей методом первапорации и может быть использовано в пищевой, химической промышленности, биотехнологии и медицине

Изобретение относится к процессам сгущения водных растворов органических и неорганических соединений и предназначено для концентрирования медицинского витамина С (МАК) с использованием метода мембранной дистилляции как экологически чистого процесса

Изобретение относится к устройствам для выделения растворенного компонента из жидкости с использованием паропроницаемой мембраны и последующей конденсации пара на стенке, охлаждаемой циркулирующей жидкостью

Изобретение относится к водоочистителю, который раскрыт в преамбуле п.1, в частности к водоочистителю для домашнего пользования

Изобретение относится к устройству для получения чистой воды из неочищенной воды и, более конкретно, к такому устройству, включающему в себя испарительную систему, состоящую из первого контура, в котором циркулирует неочищенная вода, и второго контура, в котором циркулирует жидкий охладитель, а также мембранные элементы, предназначенные для разделения циркулирующей неочищенной воды и циркулирующего жидкого охладителя и для получения чистой воды из неочищенной воды посредством мембранной перегонки сквозь среду мембранных элементов, ограничивающих циркулирующую неочищенную воду

Изобретение относится к способам подготовки воды методом обратного осмоса и может быть использовано в химической, энергетической и других областях промышленности для получения питательной воды энергетических котлов и систем парообразования в аммиачном производстве
Изобретение относится к химии высокомолекулярных соединений и предназначено для получения композитных полимерных первапорационных мембран, представляющих собой многослойное, содержащее по крайней мере два слоя изделие

Изобретение относится к мембранным технологиям и предназначено для изготовления новых мембран для разделения спиртовых смесей методом первапорации

Изобретение относится к технологиям трубопроводного транспорта природного газа, содержащего гелий, его очистки от гелия и распределения очищенного газа между промежуточными потребителями

Изобретение относится к технологии получения мембран, в частности первапорационных композитных мембран, и может быть использовано в устройствах для разделения смесей компонентов с помощью первапорации или нанофильтрации. Мембрана состоит из пористой подложки и нанесенного на нее покрытия из поли(1-триметилсилил-1-пропина), содержащего наполнитель в виде агрегатов. Максимальная толщина покрытия составляет 25 мкм. Способ получения мембраны включает нанесение раствора поли(1-триметилсилил-1-пропина), испарение раствора и термическую обработку для удаления остаточного количества растворителя. Мембраны имеют высокую селективность в сочетании с повышенной скоростью первапорационного потока. 5 н. и 11 з.п. ф-лы, 3 ил., 1 табл., 5 пр.

Изобретение относится к технологии очистки воды, являющейся побочным продуктом получения жидких углеводородов при помощи реакции Фишера-Тропша. Способ очистки водного потока, поступающего из реакции Фишера-Тропша, включает подачу указанного водного потока, содержащего органические побочные продукты реакции, в один или более блоков диффузионного испарения, причем указанный один или более блоки диффузионного испарения включают по меньшей мере одну полимерную мембрану диффузионного испарения, с получением двух выходящих потоков: водного потока (1), обогащенного спиртами, содержащими от 1 до 8 атомов углерода, предпочтительно от 2 до 4 атомов углерода, и водного потока (2), обогащенного водой. Технический результат - очистка водного потока до качества, позволяющего его использовать как питьевую воду, воду для орошения, повторно использовать в реакции Фишера-Тропша в качестве технической или охлаждающей воды, получение потока, обогащенного спиртами, с возможностью их дальнейшего использования. 4 н. и 33 з.п. ф-лы, 2 ил., 1 табл., 1 пр.

Модульная проточная система содержит множество рамных элементов, которые предназначены для создания различных функциональных блоков, таких как, в частности, мембранная дистилляционная ступень, парогенератор, конденсатор, теплообменник, фильтр и/или перфузионная ступень, посредством соединения с помощью структур (11) сварных перегородок в различные, содержащие по меньшей мере два, в частности, по меньшей мере десять рамных элементов штабели. При этом рамные элементы содержат снабженную проточными отверстиями и каналами для пара и/или текучей среды наружную раму и окруженную наружной рамой центральную внутреннюю зону. Дополнительно к этому, рамные элементы снабжены с обеих сторон структурой сварных перегородок, которые ограничивают, с одной стороны, содержащую пропускные отверстия, а также центральную внутреннюю зону область и, с другой стороны, по меньшей мере две содержащие канал для пара и/или текучей среды области. 23 н.п. ф-лы, 13 ил.

Изобретение относится области разделения жидких смесей и может применяться в различных отраслях промышленности и сельского хозяйства. Способ выделения и концентрирования органических веществ термоградиентным первапорационным разделением жидких смесей через мембрану с помощью устройства, содержащего емкости с разделяемой смесью и хладагентом, термопервапорационный модуль, содержащий проточную камеру с разделяемой смесью, ограниченную с одной стороны селективной по целевому компоненту мембраной, проточную камеру с хладагентом, ограниченную с одной стороны твердой поверхностью конденсации, камеру конденсации, расположенную между мембраной и поверхностью конденсации, проходящих через термопервапорационный модуль, содержащих целевой компонент, и насосы для циркуляции разделяемой смеси и хладагента между соответствующими емкостями и термопервапорационным модулем. В качестве поверхности конденсации пермеата используют пористую перегородку, при этом насос для циркуляции хладагента размещен после термопервапорационного модуля. Изобретение обеспечивает выделение и концентрирование органических веществ из жидких смесей в отсутствии вакуума при увеличении потока пермеата и фактора разделения по целевому веществу. 2 н. и 1 з.п. ф-лы, 7 табл., 36 пр., 2 ил.

Изобретение относится к области разделения смесей газов и может быть использовано в химической и нефтехимической промышленности, в медицине и здравоохранении, в сельском хозяйстве

Изобретение относится к получению асимметричных полимерных первапорационных мембран и может быть использовано в химической, нефтехимической и других отраслях промышленности для разделения смесей органических жидкостей, содержащих алифатические спирты

Изобретение относится к области химии высокомолекулярных соединений, точнее, к способу получения композитных полимерных первапорационных мембран, представляющих собой многослойное, содержащее по крайней мере два слоя изделие

Изобретение относится к высокоселективным мембранам для разделения газов методом газопроницаемости

Изобретение относится к области химии высокомолекулярных соединений, точнее к способу получения композитных полимерных первапорационных мембран, представляющих собой мультислойное изделие, выполненное из слоев на основе полимеров различной структуры

Изобретение относится к области химии высокомолекулярных соединений, точнее к способу получения композиционных полимерных диффузионных мембран, и может быть использовано в химической и нефтехимической, а также в иных отраслях промышленности

Изобретение относится к композиционным протонпроводящим полимерным мембранам на основе (со)полимерных линейных матриц
Наверх