Способ получения углеродных изделий с контролируемыми характеристиками пористой структуры

 

Использование: при производстве фильтрующих элементов как для баромембранных процессов микро- и ультрафильтрации, так и для традиционного процесса фильтрования, а также при получении пористых изделий из углерода в электродной и электротехнической промышленности. Предложенный способ включает в себя смешение при температуре 120oC наполнителя узких фракций в количестве от 40 до 66% с соответствующим количеством связующего, состоящего из среднетемпературного каменноугольного пека марки А и парообразователя - полиэтиленового воска, являющегося отходом производства полиэтилена низкой плотности, прессовании смеси на прошивном прессе при температуре мундштука (фильеры) от 77 до 103oC, и обжиге при подъеме температуры со скоростью не выше 3 град/мин до 1000oC.

Изобретение относится к химической технологии, а именно к получению углеродных пористых материалов, и может быть использовано главным образом при производстве фильтрующих элементов как для баромембранных процессов микро- и ультрафильтрации, так и для традиционного процесса фильтрования, а также при получении пористых изделий из углерода в электродной и электротехнической промышленности.

Известен способ производства пористых углеродных изделий, которые включают смешение углеродного наполнителя со связующим фенолформальдегидной смолой и пеком, формование полученной смеси и последующую корбонизацию при набивании заготовок до 1000oC и выше в течение 240 300 ч [1] Образование пор в углеродном материале при реализации этого способа происходит за счет удаления газообразных продуктов, выделяющихся из связующего при обжиге углеродного изделия. Однако использование фенол-формальдегидной смолы приводит к увеличению доли закрытых пор в обожженном изделии.

Известен способ получения пористого углеродного материала, включающего подготовку текущего литейного шликера на основе жидкой дисперсионной фазы, смешиванием предварительно гомогеннодиспергированной органической связки жидкого порофора и диспергированного агента, отливку из шликера заготовок, их отверждение до самонесущего состояния, удаление из заготовок жидкой дисперсионной фаз и последующую термообработку до высоких температур [2] К недостаткам этого способа относится большая трудоемкость технологических операций и низкая производительность.

Задачей настоящего изобретения является разработка способа получения пористых углеродных материалов, позволяющего регулировать как величину открытой пористости, так и размера пор в готовом изделии. Указанная задача достигается модификацией связующего путем добавления в него органического порообразователя, гомогенно распределяющегося в нем и разлагающегося с образованием незначительного коксового остатка, а также использованием наполнителя узких фракций. Предложенный способ включает смешение при температуре 120oC наполнителя узких фракций в количестве от 40 до 66% с соответствующим количеством связующего, состоящего из среднетемпературного каменноугольного пека марки A и порообразователя полиэтиленового воска (ПВ), являющегося отходом производства полиэтилена низкой плотности, (содержание ПВ в модифицированном связующем от 20 до 60 мас. прессовании смеси на прошивном прессе при температуре мундштука (фильеры) от 77 до 103oC, и обжиге при подъеме температуре со скоростью не выше 3 град/мин до 1000oC.

Использование модифицированного полиэтиленовым воском каменноугольного пека позволяет уменьшить выход коксового остатка при обжиге изделия по сравнению с применением такого же количества немодифицированного связующего. Достоинством такого способа регулирования пористости является то, что при фактически меньшем содержании связующего, реологические свойства шихты не ухудшаются, что имеет особенно важное значение при прошивном формовании. Кроме того, максимальное значение пористости может достигать значения пустотности наполнителя, которое, как нами было установлено, для узких фракций практически не зависит от среднего размера частиц и составляет примерно 50% При этом размер частиц, как это было показано в ряде работ, обуславливает средний размер пор в обоженных изделиях. Таким образом, использование модифицированного связующего позволяет при определенных условиях одновременно регулировать как открытую пористость, так и преобладающий размер пор в обожженном изделии. Указанные выше пределы технологических параметров обеспечивают получение оптимальных характеристик пористой структуры изделий, их прочностных свойств и геометрических размеров, что иллюстрируют следующие примеры.

Пример 1.

В обогреваемый смеситель загружают 60 мас. кокса КНПС фракции 32 мкм, 28 мас. измельченного каменноугольного пека и 12 мас. измельченного полиэтиленового воска. При комнатной температуре перемешивают в течение 30 мин. Затем при постоянном перемешивании поднимают температуру в смесителе до 120oC и продолжают перемешивание в течение 60 мин. Смесь охлаждают, выгружают и формуют на гидравлическом прессе в виде трубчатых элементов диаметром 10 мм с толщиной стенки 2 мм и длиной 1000 мм при температуре фильеры 90oC. Поле охлаждения изделия помещают в защитную коксовую засыпку т обжигают, поднимая температуру до 1000oC со скоростью 2 град/мин. Полученный материал имеет следующие характеристики: открытая пористость - 43,5% радиус (и доля) преобладающих пор 0,2 мкм (70%); предел прочности на разрыв 3,5 МПа.

Пример 2.

Последовательность приготовления как в примере 1, отличающаяся тем, что предварительно в смеситель загружают измельченные воск и пек в указанных соотношениях, нагревают при перемешивании до 120oC и добавляют нагретый кокс (во избежание комкования массы). Полученный материал имеет те же характеристики, что и в примере 1.

Пример 3.

Шахту, состоящую из 44,5 мас. кокса КНПС фракции -36; +32 мкм. 26,1 мас. пека и 29,4 мас. порообразователя, смешивают как указано в примере 1 или 2. Формуют при температуре 77oC и обжигают, поднимая температуру до 1000oC со скоростью 1 град/мин. Полученный материал имеет следующие характеристики: открытая пористость 55,5% радиус преобладающих пор 21,0 мкм; предел прочности на разрыв 2,25 МПа.

Пример 4.

61,5 мас. кокса КНПС фракции -36; +32 мкм, 28,1 мас. каменноугольного пека и 10,4 мас. полиэтиленового воска смешивают как это указано в примере 1 или 2. Формуют при температуре 103oC и обжигают, поднимая температуру до 1000oC со скоростью 1 град/мин. Полученный материал имеет следующие характеристики: открытая пористость 45% радиус преобладающих пор (и их доля) 0,2 мкм (78%); предел прочности на разрыв 2,5 МПа.

Пример 5.

53 мас. кокса КНПС фракции -50; +36 мкм, 37,6 мас. каменноугольного пека и 9,4 мас. полиэтиленового воска перемешивают как указано в примере 1 или 2. Формуют при температуре 90oC и обжигают, поднимая температуру до 1000oC со скоростью 1 град/мин.

Полученный материал имеет следующие характеристики: открытая пористость 29,6% радиус преобладающих пор 1 мкм; предел прочности на разрыв 3,5 МПа.

Область применения предлагаемого изобретения ограничивается следующими параметрами.

При внесении в композицию кокса в количестве превышающем 66% использовать прошивное формование не удается из-за "жесткости" массы.

При содержании кокса в композиции менее 40% изделие разрушается в процессе обжига.

При использовании указанных в формуле изобретения составов композиция не формируется с использованием прошивного формования, если ее температура ниже 70oC. Если при этом температура формования превышает 110oC, то изделие деформируется при выходе из мундштука (фильеры) пресса.

Формула изобретения

Способ получения углеродных изделий с контролируемыми характеристиками пористой структуры, включающий смешение прокаленного нефтяного кокса узкого фракционного состава с каменноугольным пеком, прошивное формование и обжиг в защитной засыпке при 1000oС, отличающийся тем, что на смешение дополнительно подают полиэтиленовый воск в количестве 9 36 мас. кокс подают в количестве 40 66 мас. компоненты смешивают при 120oС, а формование ведут при 70 110oС.



 

Похожие патенты:

Изобретение относится к созданию новых энергонасыщенных неорганических углеродсодержащих катодных материалов на основе соединений фторированного углерода, используемых в химических источниках тока (ХИТ), преимущественно в трехвольтовых ХИТ системы "фторуглерод-литий" с повышенными разрядными характеристиками

Изобретение относится к области получения алмазной суспензии из взрывчатых веществ и может быть использовано в химической, электрохимической промышленности, радиоэлектронике и инструментальном производстве

Изобретение относится к металлообрабатывающей и химической промышленности и может быть использовано в металлообрабатывающей и химической промышленности в качестве абразивов, наплавочных смесей, режущего инструмента, на основе карбидов, нитридов и карбонитридов титана, по своим физико-механическим характеристикам является ведущими средами других традиционно используемых соединений (корунд и карбид вольфрама)

Изобретение относится к производству пигментного диоксида титана из лейкоксенового концентрата

Изобретение относится к области получения активных углей из ископаемых углей, в частности, из бурого угля

Изобретение относится к технологии получения алмазного материала для изготовления абразивного инструмента или оптико-электрических элементов приборов и может найти применение в инструментальной и ювелирной отраслях промышленности, а также в приборостроении и в электронной технике

Изобретение относится к композиционным мембранам, способам их получения и может быть использовано в медицине, химии, пищевой и других отраслях промышленности

Изобретение относится к фильтрованию жидких и газообразных сред через фильтрующие элементы на основе сеток, преимущественно для проведения процессов ультра- или микрофильтрации в биотехнологии, пищевой, медицинской и других отраслях промышленности

Изобретение относится к способам получения тонкодисперсных мембран и может быть использовано в медицине, химии и других отраслях промышленности

Изобретение относится к получению неорганических мембран

Изобретение относится к полупроницаемым мембранам, предназначенным для процессов разделения, в частности для очистки загрязненных жидкостей
Изобретение относится к области химической технологии, конкретно к атомной экологии, и может быть использовано при очистке жидких радиоактивных отходов
Наверх