Муллитовый материал для производства огнеупорных изделий, способ изготовления муллитового материала для производства огнеупорных изделий и огнеупорное слоистое изделие

 

Изобретение относится к огнеупорным муллитовым материалам, содержащим оксиды алюминия и диоксид кремния в стехиометрическом соотношении, а также к высокоглиноземистым, силлиманитовым и муллитовым материалам состава (в %) XAl2O3YSiO2(45<x<62; 62<y<72), используемых в промышленности огнеупоров, футеровочных, защитных (от агрессивных и высокотемпературных сред) эрозионностойких изделий. Известные способы получения огнеупорных материалов, основанные на химическом или химико-термическом взаимодействии компонентов, не обеспечивают требуемые показатели качества по комплексу физико-механических и теплофизических характеристик изделий целевого назначения. В основе единого изобретательского замысла решена проблема создания и изготовления синтетических муллитовых огнеупоров, футеровочных композиций и изделий путем модификации неэкзотермических смесей, содержащих оксиды алюминия и диоксид кремния, введением порошкообразного, высокодисперсного восстановителя - алюминия. Скорость синтеза муллита (с высокими огнестойкими свойствами, минимальной пористостью, минимальным уносом массы под действием высокоскоростных потоков воздействующих сред), температура инициирования реакции синтеза и распространения ее определяются изменением состава компонентов, регулированием их соотношения и порядком введения. Этим достигается получение различных типов синтетических муллитовых материалов с требуемыми показателями качества, превосходящими прототип. 3 с. и 2 з.п. ф-лы, 1 табл.

Изобретение относится к огнеупорным алюмосиликатным материалам, содержащим оксиды алюминия и диоксид кремния, а именно к огнеупорным муллитовым материалам со стехиометрическим соотношением указанных оксидов, соответствующих химической формуле 3Al2O32SiO2, и составам (в) xAl2O3ySiO2, а также к высокоглиноземистым, точнее, муллитокремнеземистым или силлиманитовым (45 <x <62) и муллитовым (62 <x <72) огнеупорным материалам, и может быть широко использовано в промышленности для изготовления массовых огнеупоров.

Изобретение относится также к технологии изготовления огнеупорных материалов и изделий, получаемых химическими способами, в частности посредством реакций химикотермического взаимодействия компонентов составов, содержащих свободный металл.

Известно, что для упрочнения поверхностного рабочего слоя материала или изделия на его основе в случае использования его в качестве огнеупорной или лучепоглощающей футеровки (футеровочной плитки) в исходный состав для получения огнеупора с упрочненным поверхностным слоем (или с износостойким покрытием) композиционного или слоистого огнеупорного материала могут быть введены дополнительные компоненты, например карбид кремния (карборунд) [Демиденко Л. М. Высокоогнеупорные композиционные покрытия. М. Металлургия, 1979] Известны и широко используются в различных областях промышленности алюмосиликатные, в том числе высокоглиноземистые, в частности, муллитовые и муллитокорундовые огнеупорные материалы, полученные спеканием технического глинозема (для синтеза муллита), которые приняты в качестве прототипа [Стрелов К.К. и др. Технология огнеупоров. М. Металлургия, 4-е изд. перераб. и доп. 1988, с.296-307] Однако их физико-механические и теплофизические характеристики недостаточно высоки для работы во многих агрессивных высокотемпературных средах.

Наиболее близким аналогом является муллитовый материал для изготовления огнеупорных изделий, содержащий муллит состава 3Al2O32SiO2, что соответствует содержанию 72 мас. Al2O3 и 28 мас. SiO2, полученный экзотермическим синтезом из исходной смеси шихты, содержащей оксид кремния и алюминий, с 2-3% -ным раствором жидкого стекла, при составе смеси (в мас.): оксид кремния 25, алюминий 15, жидкое стекло остальное (Патент РФ N 2049763, кл. C 04 B 41/87, 1995).

Наиболее близким аналогом является способ изготовления муллитового материала для производства огнеупорных изделий, включающий приготовление шликерного состава путем смешения шихты, содержащий диоксид кремния и алюминий, с 2-3%-ным раствором жидкого стекла при содержании (в мас.): диоксид кремния 25, алюминий 15, жидкое стекло остальное, формование, сушку, нагрев до температуры 650-750oC для инициирования синтеза муллита (Патент РФ N 2049753, кл. C 04 B 41/87, 1995).

Наиболее близким аналогом также является огнеупорное слоистое изделие, содержащее основной слой выполненный из шамота и покровный слой, выполненный из муллитового материала, содержащего муллит состава 3Al2O32SiO2, что соответствует содержанию 72 мас. Al2O3 и 28 мас. SiO2 и полученный экзотермическим синтезом из исходной шихты, содержащей диоксид кремния и алюминий, в смеси с 2-3%-ным раствором жидкого стекла при составе смеси (в мас.): диоксид кремния 25, алюминий 15, жидкое стекло остальное (Патент РФ N 2049763, кл. C 04 B 41/87, 1995).

Задачей изобретения является разработка многоцелевого муллитового материала для производства огнеупорных изделий, способа производства муллитового материала и огнеупорного слоистого изделия, преимущественно футеровочных плит, с повышенной огнеупорностью и улучшенными механическими характеристиками, пригодных для эксплуатации в условиях эрозионного воздействия высокотемпературной (до 1800oC) агрессивной среды, в частности, для использования их в тепловых установках и агрегатах кремационных печей.

Задача решается тем, что разработан муллитовый материал для производства изделий, содержащий муллит состава XAl2O3 YSiO2полученный экзотермическим синтезом исходной смеси шихты, содержащий диоксид кремния и алюминий, с раствором жидкого стекла, содержащий: 61-72 мас. муллита с содержанием в нем "X", равным 68-70 мас. и "Y", равным 33 мас. при следующем составе исходной смеси (мас.): диоксид кремния 70-80, алюминий 20-30 и 35%-ный раствор жидкого стекла в количестве 16-18 от массы шихты.

При этом исходная смесь может дополнительно содержать карбид кремния в количестве 10-40% от массы шихты.

Кроме того, разработан способ изготовления муллитового материала для производства огнеупорных изделий, включающий приготовление шликерного состава путем смешения шихты, содержащей диоксид кремния и алюминия с раствором жидкого стекла, формирования, сушку и нагрев до температуры инициирования экзотермического синтеза и последующей синтез муллита, при этом используют шихту, содержащую (мас.): диоксид кремния 70-80, алюминий 20-30 и 30-50%-ный раствор жидкого стекла в количестве 16-18% от массы шихты, осуществляют нагрев заготовки до температуры инициирования синтеза муллита, равной 700-800oC, а синтез при температуре 1400-1700oC.

При этом шликерный состав может дополнительно содержать карбид кремния в количестве 10-40% от массы шихты.

Кроме того, разработано огнеупорное слоистое изделие, содержащее основной слой, выполненный из алюмосиликатного материала, содержащего муллит состава XAl2O3YSiO2, и полученного экзотермическим синтезом исходной смеси шихты, содержащей диоксид кремния и алюминия, с раствором жидкого стекла, при этом основной слой выполнен из материала, содержащего 61-72 мас. состава XAl2O3 и YSiO2 с содержанием в нем "X", равным 68-70 мас. и "Y", равным 30-32 мас. и полученного экзотермическим синтезом исходной смеси шихты, содержащей (в мас.): диоксид кремния 70-80 и алюминий 20-30, с 30-50%-ным раствором жидкого стекла в количестве 16-18% от массы шихты, покровный слой выполнен из материала, содержащего 61-72 мас. муллита состава XAl2O3 и YSiO2 с содержанием в нем X, равным 68-70 мас. и Y, равным 30-32 мас. причем исходная смесь дополнительно содержит карбид кремния при следующем соотношении компонентов (мас. ): диоксид кремния 70-80, алюминий 20-30, карбид кремния 10-40, 30-50%-ный раствор жидкого стекла в количестве 16-18 от массы шихты.

Ниже приведены пример конкретного осуществления изобретения, а также предпочтительные варианты изобретения.

В качестве кремнийсодержащего компонента исходной смеси использовали песок С-070-1, содержащий 98,3% SiO2 диоксида кремния, который являлся окислителем системы. В качестве восстанавливающего агента служил порошкообразный металлический алюминий марки АСД-1.

Опытным путем обнаружено, что максимальная температура, обеспечивающая возможность протекания процесса синтеза муллита и максимальный выход огнеупорного продукта на основе выбранной системы (nSiO2+mAl), реализуется при следующем соотношении компонентов (мас.): диоксид кремния - 68-70; алюминий 30-32.

Для обеспечения однородности структуры получаемого материала и стабильности его свойств при проведении процесса оказалось необходимым использовать тонкодисперсные порошкообразные компоненты. В частности, песок используется следующего фракционного состава: частицы размером 63-100 мкм - 16% менее 64 мкм 84% Порошкообразный металлический алюминий использовали без предварительной механической обработки.

Для получения образцов желаемой формы и размеров в исходную смесь порошкообразных компонентов (шихту) добавляли связующее. В исследованной системе был использован 30-50% -ный раствор промышленного жидкого стекла, который вводили в смесь в количестве 16-18% от массы шихты. Смешение компонентов системы проводилось в смесителях типа "Werner", однако могут быть использованы смесители любой другой конструкции.

Из полученной вязкой массы (шликера) в специальных разборных формах на прессах при давлении 200 кг/см2 формовали образцы заданных размеров и форм. Отформованные образцы сушили сначала при комнатной температуре в течение 2-х суток, затем в сушильном шкафу при температуре 50oC в течение 6-8 ч и оставляли для естественного охлаждения до комнатной температуры.

Далее образцы отформованного материала или изделия подвергали нагреву до температуры инициирования окислительно-восстановительной реакции взаимодействия компонентов (система муллита). Опытным путем было найдено, что эта температура составляет 750-800oC. Образцы материала помещали в печь типа СНОЛ на специальные подложки на равном удалении от стенок печи. Равномерный и глубокий прогрев образцов обеспечивался за счет постепенного (линейного) режима подъема температуры печи со скоростью 200oC за 30 мин. Температура среды контролировалась ХА-термопарой, помещенной вблизи образцов, и регистрировалась милливольтметром. Температура образца контролировалась ВР-термопарой, размещенной в образце.

Экспериментально было установлено, что химикотермическая реакция взаимодействуя компонентов исследуемой окислительно-восстановительной системы, на основе которой изготавливались образцы, подвергаемые обработке путем постепенного нагрева их в печи (скорость нагрева 7-9oC/мин, время нагрева 100-110 мин), инициируется при температурах, не превышающих 800oC.

Опытным путем установлены следующие оптимальные параметры системы 68-70% SiO230-32% Al: температура инициирования реакции синтеза муллита 750-800oC; максимальная температура, характеризующая экзотермику процесса синтеза муллита, находится в пределах 1600-1700oC; скорость фронтального распространения процесса 2-3 мм/с.

Согласно результатам термодинамического расчета, проведенного на основании экспериментальных данных, наиболее благоприятные условия образования муллита (с химической формулой 3Al2O32SiO2) в муллитовом огнеупорном материале состава (в) mAl2O3nSiO2, где 68 <m <70, 30 <n <32, соответствуют исходным шихтовым композициям, содержащим 25-35% алюминия.

Исследования внутренней структуры образцов полученного материала (и изделий на его основе) показали, что образование муллита происходило равномерно во всем объеме. Материал обладает повышенными эксплуатационными характеристиками в сравнении с характеристиками высокоглиноземистых огнеупоров с содержанием Al2O3 свыше 45% Результаты представлены в таблице.

Исследования образцов нового муллитового огнеупорного материала в тепловом цикле (нагрев до 1800oC охлаждение до 20oC) показали, что после 30 циклов структура образцов материала остается неизменной. Это свидетельствует о том, что монолитность, структура поверхности и механическая прочность материала не нарушаются, и, следовательно, при данном режиме он может эксплуатироваться и дальше.

Одним из возможных воплощений предлагаемого муллитового материала является его использование в качестве толстослойного огнеупорного покрытия и изделий из высокоглиноземистой подложки.

В этом варианте осуществления изобретения исходную смесь компонентов посредством связки (50%-ного раствора жидкого стекла) превращали в шликер, который наносили 2-мм слоем на поверхность шамотных кирпичей. Полученные по шликерной ("мокрой") технологии заготовки после сушки подвергали нагреву в печи до температуры инициирования окислительно-восстановительной реакции взаимодействия компонентов 750-800oC. Образующийся при этом огнеупорный муллитовый материал состава (в) 70Al2O330SiO2 в виде толстослойного металлокерамического покрытия обладает прочным сцеплением с поверхностью шамотной основы.

Как показали проведенные испытания, многократные тепловые циклы (20-30 циклов) при широкоинтервальном изменении температуры среды (1800-2000oC) подтвердили стабильность механических свойств покрытия из предлагаемого огнеупорного муллитового материала и надежность его сцепления с основой из шамота. По сравнению с высокоглиноземистых огнеупором, как показала 50-ч проверка характеристик созданных образцов изделий, на их истираемость, износостойкость рабочего поверхностного слоя (толстослойного покрытия), оказалась в 1,5-2,0 раза выше.

Другим воплощением изобретения, обеспечивающим возможность его широкого практического использования, является изготовление на основе разработанного огнеупорного муллитового материала таких изделий, как футеровочные плиты (или плитки).

Производство футеровочных плит по вышеуказанной технологии целесообразно осуществлять на основе оксидной шихтовой композиции состава 70% SiO2+30% Al. Формование плит размером 115x110x8 мм производилось на тяжеловесном автоматическом прессе в специально разработанных для этих целей пресс-формах при давлении 200 кг/см2. После сушки и нагрева заготовок до 750-800oC в результате протекания реакции синтеза получаются футеровочные плиты из огнеупорного муллитового материала. Испытания плит подтвердили приведенные выше показатели механических и теплофизических свойств материала.

В рамках единого изобретательского замысла была поставлена и решена также задача дополнительного повышения эксплуатационных характеристик предлагаемого муллитового материала и изделий на его основе путем улучшения физико-механических свойств и повышения их сопротивления физической и химической эрозии за счет упрочнения рабочего поверхностного слоя изделия.

Для достижения этой цели в исходную шихту либо в шликерную массу, подготовленную для прессования, достаточно ввести карбид кремния (карборунд), обладающий тугоплавкостью, высокой твердостью и огнеупорностью до 2200oC.

Опытным путем было установлено, что дополнительный компонент в количестве 10-40 мас. от суммы исходных компонентов обеспечивает получение требуемых функциональных характеристик для получения слоистого строения материала и изделия (футеровочной плитки). Для этого подготовленная для формования шликерная заготовка должна быть выполнена по меньшей мере из двух слоев: первый (функциональный) слой с содержанием исходной смеси компонентов диоксид кремния+алюминий 60-90% и дополнительно карбид кремния (карборунд) 10-40% а второй (конструктивно-теплоизоляционный) слой только из исходной смеси компонентов.

Сущность этого технического решения поясняется тем, что операция формования изделия в данном случае включает следующие этапы: в разборную форму помещают увлажненную 50%-ным раствором жидкого стекла шихту состава (m%SiO2+n%Al) в количестве, обеспечивающем необходимую толщину конструктивно-теплоизоляционного слоя (6 мм) в готовом изделии; этот слой шликера выравнивают и подпрессовывают; сверху в форму загружают шликер из той же шихты, но разбавленной карборундом марки М-12 и на 10-40% в количестве, обеспечивающем в готовом изделии необходимую толщину (2 мм) упрочненного поверхностного слоя; формование плитки производят при тех же условиях, как в основном варианте, в результате получают двухслойную заготовку изделия.

Далее полученную заготовку высушивают и нагревают до температуры инициирования (750-800oC) реакции химико-термического взаимодействия компонентов (синтеза муллита). Готовое композиционное изделие представляет собой огнеупорную футеровочную плитку, упрочненную со стороны агрессивной высокотемпературной среды слоем, содержащим муллит и карборунд. Плитки имеют ровную поверхность, монолиты, сохраняют заданные размеры, равномерно окрашены по всему объему в черный цвет муллита.

Ниже приведены другие (дополнительные) примеры конкретного осуществления различных вариантов воплощения изобретения, иллюстрирующие его техническую сущность в едином изобретательском замысле.

Пример 1. Огнеупорный муллитовый материал: материал содержит синтетическую муллитовую фазу в количестве 61% остальное (по данным рентгенофазного анализа) свободный кремний и корунд.

В способе получения образцов указанного материала исходная шихта содержала: диоксид кремния 75,6 мас. и в качестве восстановителя алюминий - 24,4% Для приготовления шликерной массы использовали 50% -ный раствор жидкого стекла, который добавляли в шихту в количестве 16% от суммы исходных компонентов. Сформованную и высушенную заготовку нагревали в печи до 750oC; реакция химико-термического синтеза протекала при 1400oC с тепловым эффектом, который практически не влиял на температуру печи.

Пример 2. Материал аналогичен примеру 1, но содержание муллита составляет 68 мас. В способе его получения использовали шихту с содержанием диоксида кремния 77% и алюминия 23% а шликер готовили на 40%-ном растворе жидкого стекла в количестве 18% от массы шихты. При производстве изделия (кирпич ШБ-1 с защитным покрытием) шликерную массу наносили на его поверхность, заготовку нагревали в печи до 800oC; температура в процессе синтеза указанного материала составила 1540oC.

Пример 3. Материал аналогичен примеру 1, но с повышенным содержанием муллита 72 мас. Материал использовали для опытного производства футеровочных плиток. В способе их изготовления состав исходной шихты был близок к составу по примеру 1, а именно: содержание диоксида кремния 79% алюминия 21% при этом шликер готовили на 30%-ном растворе жидкого стекла, взятом в количестве 17 мас. от массы шихты. Сформированную и высушенную заготовку нагревали в печи до 780oC, процесс синтеза протекал при 1700oC. Полученное изделие (плитка) показало характеристики, находящиеся в пределах, указанных в таблице.

Пример 4. Огнеупорный муллитовый материал с улучшенными эксплуатационными характеристиками повышенным сопротивлением физической и химической эрозии.

Материал содержит 60 мас. муллита, остальное свободный кремний, корунд и карбид кремния. Материал был получен с использованием шихтового состава, близкого к составам по примерам 1-3 при соотношении исходных компонентов: диоксид кремния 76% алюминий 24% но при этом в шихту дополнительно был введен в качестве наполнителя (разбавителя) карбид кремния в количестве 10% от суммы исходных компонентов. Остальные условия производства указанного материала были аналогичны ранее приведенным примерам: шликер готовили с использованием 50% -ного водного раствора жидкого стекла, заготовки изделий после сушки нагревали в печи до 700oC; реакция синтеза материала с образованием муллита протекала при 1700oC.

Пример 5. Огнеупорный муллитовый материал, аналогичный материалу по примеру 4, но содержание муллита 63 мас. остальное карбид кремния, свободный кремний и корунд.

При производстве изделий (плиток) и указанного материала готовили шихту, содержащую диоксид кремния 78% алюминия 22% и карбид кремния 30% от суммы основных исходных компонентов. Остальные условия осуществления способа были аналогичны предыдущим примерам. Сформированные заготовки после сушки нагревали в печи до 780oC, процесс синтеза протекал при 1580oC.

Пример 6. Огнеупорный муллитовый материал, аналогичный по примерам 4 и 5, содержащий 69 мас. муллита, остальное карборунд, корунд и свободный кремний. Материал указанного или близкого к нему состава целесообразно использовать для производства слоистых композиционных изделий упрочненных двухслойных футеровочных плиток.

Способ изготовления таких плиток, как было описано выше, включает операцию формования двухслойной заготовки: сначала из шликерной массы по примеру 2, затем массы, содержащей диоксид кремния 80% алюминий 20% и карбид кремния 40% от суммы основных компонентов, при соотношении толщин слоев, обеспечивающих необходимую толщину конструктивно-теплоизолирующего и функционального износо- и эрозионностойкого слоя в готовом изделии. Такую заготовку подвергали подпрессовке, сушке и нагреву в печи до температуры 800oC. Реакция синтеза протекала во всем объеме заготовки при температуре 1420oC.

Разработанные огнеупорные муллитовые материалы прошли комплексные испытания в реальных условиях их целевого предназначения для защиты конструкций и устройств от воздействия высокотемпературных тепловых потоков, реализующихся в топочных процессах, в частности, они подтвердили свою высокую эррозионную и тепловую стойкость на первом отечественном кремационном комплексе "Органика-1".

Формула изобретения

1. Муллитовый материал для производства огнеупорных изделий, содержащий муллит состава xAl2O3 и ySiO2 и полученный экзотермическим синтезом исходной смеси шихты, содержащей диоксид кремния и алюминий, с раствором жидкого стекла, отличающийся тем, что он содержит 61 - 72 мас. муллита с содержанием в нем x 68 70 мас. и y 30 32 мас. при следующем составе исходной смеси, мас.

Диоксид кремния 70 80 Алюминий 20 30 30-50%-ный Раствор жидкого стекла, от массы шихты 16 18
2. Материал по п.1, отличающийся тем, что исходная смесь дополнительно содержит карбид кремния в количестве 10 40% от массы шихты.

3. Способ изготовления муллитового материала для производства огнеупорных изделий, включающий приготовление шликерного состава путем смешивания шихты, содержащей диоксид кремния и алюминий, с раствором жидкого стекла, формование, сушку и нагрев до температуры инициирования экзотермического синтеза и последующий синтез муллита, отличающийся тем, что используют шихту, содержащую, мас. диоксид кремния 70 80 и алюминий 20 30, и 30 50%-ный раствор жидкого стекла в количестве 16 18% от массы шихты, осуществляют нагрев до температуры инициирования синтеза муллита 700 800oС, а последующий синтез при 1400 1700oС.

4. Способ по п.3, отличающийся тем, что шликерный состав дополнительно содержит карбид кремния в количестве 10 40% от массы шихты.

5. Огнеупорное слоистое изделие, содержащее основной слой, выполненный из алюмосиликатного материала, и покровный слой, выполненный из материала, содержащего муллит состава xAl2O3 и ySiO2 и полученного экзотермическим синтезом исходной смеси шихты, содержащей диоксид кремния и алюминий с раствором жидкого стекла, отличающийся тем, что основной слой выполнен из материала, содержащего 61 72 мас. муллита состава xAl2O3 и ySiO2 с содержанием в нем x 68 70 мас. и y 30 32 мас. и полученного экзотермическим синтезом исходной смеси шихты, содержащей, мас. диоксид кремния 70 80 и алюминий 20 30, с 30 50%-ным раствором жидкого стекла в количестве 16 18% от массы шихты, а покровный слой выполнен из материала, содержащего в 1 72 мас. муллита состава x Al2O3 и ySiO2 с содержанием в нем x 68 70 мас. и y 30 32 мас. причем исходная смесь дополнительно содержит карбид кремния при следующем соотношении компонентов, мас.

Диоксид кремния 70 80
Алюминий 20 30
Карбид кремния, от массы шихты 10 40
30 50%-ный Раствор жидкого стекла, от массы шихты 16 18

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к производству углеродных изделий и материалов и предназначено для защиты от окисления изделий, работающих в условиях окислительной среды при высоких температурах

Изобретение относится к производству углеграфитовых материалов с карбидокремниевым покрытием, применяемых в цветной, черной металлургии, машиностроении, космической и авиационной технике, электронной и химической отраслях промышленности, в частности, для защиты от окисления химических реакторов, изготовленных из углерод-углеродного материала

Изобретение относится к получению упрочняющих покрытий на пористых, например, теплоизоляционных материалах, и может быть использовано в теплотехнической, энергетической промышленности, строительстве и др

Изобретение относится к области нанесения декоративных покрытий и может быть использовано для декоративного оформления поверхности фарфоровых, фаянсовых и т

Изобретение относится к силикатной промышленности, в частности к защитным покрытиям, и может быть использовано для упрочнения огнеупорной футеровки вращающихся печей барабанного типа, выполненный из муллитокорундовых огнеупоров, магнезиально-шпинелидных огнеупоров, огнеупоров системы Al2O3-MgO-TiO2, огнеупорных бетонов различного состава с огнеупорностью не ниже 1750оС

Изобретение относится к получению изделий из тугоплавких соединений с использованием продуктов СВС-процесса

Изобретение относится к стекольной промышленности и может быть использовано, в частности, в процессе получения кварцевых волоконных световодов, предназначенных для волоконно-оптических линий связи, оптоэлектронных приборов, например, в волоконно-оптической шине накопителя на оптических дисках

Изобретение относится к машиностроению, в частности может быть использовано для защиты от окисления фрикционных углеродных изделий, работающих на воздухе при температуре до 1000С

Изобретение относится к защитным покрытиям, применяемым в различных отраслях техники (машиностроение, авиация и другие высокотемпературные области техники) и может быть использовано для получения защитных антиокислительных покрытий на углеродных материалах (УМ)

Изобретение относится к составу кладочного раствора повышенной термостойкости, химической стойкости, с высокой адгезионной прочностью и прочностью на срез

Изобретение относится к составам для горячего ремонта кладки печей методом самораспространяющегося высокотемпературного синтеза и может быть использовано в металлургической, коксохимической и других отраслях промышленности

Изобретение относится к области цветной металлургии, в частности, к литейному производству и касается составов, применяемых для защиты теплоизоляционной кладки тепловых агрегатов (плавильно-раздаточных печей, литейных ковшей и т.д.) от воздействия расплавов
Изобретение относится к области создания огнеупорных материалов и технологии нанесения на них упрочняющих поверхностных слоев покрытий, обеспечивающих существенное повышение эксплуатационных показателей и свойств изделий в условиях применения их в контакте с статическими и динамическими воздействиями высокотемпературных, высокоскоростных и агрессивных сред
Изобретение относится к производству огнеупорных материалов и может быть использовано в цветной металлургии для изготовления элементов литейной оснастки, контактирующих с расплавленным алюминием и его сплавами, а также для изготовления теплоизоляционных изделий, стойких к воздействию расплавленного алюминия и покровно-рафинирующих флюсов

Изобретение относится к производству огнеупоров и может быть использовано для соединения керамических и огнеупорных изделий, а также при выполнении футеровки металлургических и тепловых агрегатов из штучных изделий

Изобретение относится к области металлургии, а именно к способам горячего ремонта огнеупорной кладки нагревательных печей и может быть использовано в любой другой отрасли промышленности, где требуется ремонт поврежденной футеровки

Изобретение относится к металлургическому и огнеупорному производству, в частности к составам масс для изготовления огнеупорных изделий, преимущественно графитосодержащих тиглей для плавки и раздачи цветных металлов и сплавов, муфелей для получения окиси цинка, подставок и надставок тиглей и другой аналогичной продукции
Наверх