Способ стимулирования роста морфогенного каллуса кукурузы

 

Использование: сельское хозяйство и биотехнология, в частности при культивировании тканевых эксплантов кукурузы. Сущность изобретения: стимулирование роста морфогенного каллуса кукурузы осуществляют путем его культивирования на питательной среде Мурасиге-Скуга, содержащей в каждом нечетном пассаже ауксины Пиклорам, Дикамбу и 2,4Д в количестве 0,2-0,4 мг/л, а в четном - понижают их концентрацию до 0,2 мг/л каждого. 3 табл.

Известен способ получения морфогенного каллуса кукурузы (авт. свид. N 1701197, кл. C 12 N 5/04, 1991), выбранный в качестве прототипа, включает получение и поддержание эмбриогенных каллусов кукурузы на средах с тремя ауксинами: Пиклорамом, Дикамбой, 2, 4Д. При совместном внесении ауксинов достигается увеличение выхода эмбриогенного каллуса. Однако при последующем культивировании каллусов через несколько пассажей интенсивность роста каллусов и частота регенерации из них растений снижается.

Целью настоящего изобретения является увеличение интенсивности роста эмбриогенных каллусов кукурузы и поддержание в стабильном состоянии способности каллусов к регенерации растений. Все это в конечном итоге увеличивает возможности по использованию биотехнологических подходов для создания новых форм растений.

Указанная цель достигается тем, что в способе стимулирования роста морфогенных каллусов кукурузы с помощью градиентов концентрации ауксинов эмбриогенные каллусы последовательно пассируют на средах то с высоким содержанием ауксинов, то с низкой их концентрацией. При перенесении каллусов со среды с высокой концентрацией ауксинов на среду с низкой ее концентрацией возникает кратковременный диффузионный градиент концентраций фитогормонов, что способствует увеличению относительного прироста каллусной массы, и каллусы остаются способными к регенерации растений более продолжительное время.

Способ осуществляется следующим образом. В качестве эксплантатов использовались незрелые зародыши кукурузы сорта Шиндельмайзер, линий ИК 226-ТВ, А 554, размером 1,5-2,5 мм (15-20 дней после опыления). Незрелые семена поверхностно стерилизовали в 0,1%-м растворе сулемы, после промывки из них вычленялись незрелые зародыши и высаживались щитком вверх на среду с минеральными солями по Мурасиге и Скугу (в основном варианте) с 30 г/л сахарозы, 1 мг/л тиамина, 1 мг/л пиридоксина, 1 мг/л никотиновой кислоты, 100 мг/л мезоинозита, 500 мг/л пролина, 100 мг/л гидролизата казеина, 0,8% агара, 0,1-0,5 мг/л 2,4-Д, 0,1-0,5 мг/л Пиклорам, 0,1-0,5 мг/л Дикамба, pH среды доводилась до 5,8. Культивировали в темноте при 29-32 градусах C в течение трех недель. Затем сформировавшиеся каллусы пассируют на свежую питательную среду каждые 2-3 недели.

В качестве показателя прироста и морфогенных каллусов определялся относительный прирост каллусной массы: П=Мконисх, где Мисх исходная масса каллуса, Мкон конечная масса каллуса.

Для увеличения прироста каллусной массы в каждом последующем пассаже изменяют концентрацию ауксинов (Пиклорама, Дикамбы, 2,4 Д): в первом пассаже концентрация ауксинов составляет 0,2-0,3 мг/л каждого ауксина, во втором -0,2 мг/л каждого, в третьем-0,2- 0,3 мг/л и т.д. Таким образом, в каждом нечетном пассаже концентрация ауксинов составляет 0,2-0,3 мг/л; в каждом четном пассаже 0,2 мг/л. При перенесении каллусов со среды с высокой концентрацией ауксинов на среду с низкой ее концентрацией возникает кратковременный диффузионный градиент концентраций фитогормонов, что способствует увеличению относительного прироста каллусной массы, и каллусы остаются способными к регенерации растений более продолжительное время.

Для регенерации растений эмбриогенные каллусы переносят на среду с 0,1 мг/л 2,4-Д, 0,1 мг/л Дикамба, 0,1 мг/л Пиклорам, 50 мг/л триптофана, 5 мг/л аденина и культивируют на свету при 26oС при 16-часовом фотопериоде.

В качестве показателя интенсивности регенерационных процессов использовался показатель процент каллусов с побегами Пр= (Кпо) 100, где Пр процент каллусов с побегами, Кп количество каллусов с побегами, Ко общее количество побегов).

Пример 1 Влияние градиентов фитогормонов на прирост каллусной массы кукурузы при высоких значениях перепада концентраций ауксина.

Изучалось влияние градиентов фитогормонов при высоких значениях перепада концентрации ауксина. Для этого каллусы, культивировавшиеся при высоких концентрациях ауксинов (по 0,30 мг/л Пиклорам, Дикамба, 2,4 Д) переносят на среду без гормонов и измеряют относительный прирост каллусной массы. При этом в результате диффузии гормонов из каллуса в среду возникает градиент концентраций фитогормонов, который направлен сверху вниз от каллуса к среде (позитивный градиент вариант 3 по табл.1). В другом варианте опыта каллусы пересаживают с безгормональной среды на среду с высокой концентрацией гормонов (0,3 мг/л Пиклорам, 0,3 мг/л Дикамба, 0,3 мг/л 2,4). В этом случае возникающий градиент концентрации направлен снизу вверх (негативный градиент вариант 4 в табл. 1). В качестве контроля в данном случае использовались варианты, в которых каллусы пассировались с безгормональной среды на безгормональную (нижний контроль вариант 1 в табл.1) и со среды с высоким содержанием ауксинов (по 0,30 мг/л Пиклорама, Дикамбы, 2,4 Д) на такую же среду (верхний контроль вариант 2 в табл.1).

Данные эксперимента приведены в таблице 1.

Как видно из таблицы, позитивный градиент концентраций приводит к существенному увеличению прироста каллусной массы по сравнению с верхним контролем (прирост выше в 1,66 раза). Однако не наблюдается существенного увеличения прироста по сравнению с верхним контролем. Это обусловлено тем, что при пассировании каллусов на безгормональной среде происходит сильный рост корней и побегов, в то время как в опытном варианте прирост полностью обеспечивается ростом эмбриогенного каллуса. Негативный градиент концентраций ауксинов не приводил к существенному увеличению прироста по сравнению с контролем. Однофакторный дисперсионный анализ данных показывает, что влияние позитивного градиента концентраций ауксинов является статистически значимым, поскольку фактический коэффициент Фишера в опыте (9,09) значительно превышает его стандартное значение (8,9) при уровне значимости 5% Таким образом, в опыте наблюдалось увеличение прироста каллусной массы кукурузы под действием высокого позитивного градиента концентрации ауксинов.

Пример 2 Влияние средних градиентов концентраций ауксинов на прирост каллусной массы кукурузы.

Изучалось влияние градиентов фитогормонов при средних значениях перепада концентраций ауксина. Для этого каллусы, культивировавшиеся при высоких концентрациях ауксинов (по 0,30 мг/л Пиклорам, Дикамба, 2,4Д) переносят на среду с низкими концентрациями гормонов (0,1 мг/л Пиклорам, 0,1 мг/л Дикамба, 0,1 мг/л 2,4 Д) и измеряют относительный прирост каллусной массы. При этом в результате диффузии гормонов из каллуса в среду возникает градиент концентраций фитогормонов, который направлен сверху вниз от каллуса к среде (позитивный градиент вариант 3 по табл.2). В другом варианте опыта каллусы пересаживают со среды с низкой концентрацией ауксинов (0,1 мг/л Пиклорам, 0,1 мг/л Дикамба, 0,1 мг/л 2.4Д) на среду с высокой концентрацией гормонов (0,3 мг/л Пиклорам, 0,3 мг/л Дикамба, 0,3 мг/л 2,4Д). В этом случае возникающий градиент концентраций направлен снизу вверх (негативный градиент вариант 4 в табл.1). В качестве контроля в данном случае использовались варианты, в которых каллусы пассировались со среды с низкой концентрацией ауксинов (0,1 мг/л Пиклорам, 0,1 мг/л Дикамба, 0,1 мг/л 2,4 Д) на такую же среду (нижний контроль вариант 1 в табл.1) и со среды с высоким содержанием ауксинов (по 0,30 мг/л Пиклорама, Дикамбы, 2,4 Д) на такую же среду (верхний контроль вариант 2 в табл.1).

В приведенном выше варианте опыта перепад концентраций меньше, чем в примере 1 общий перепад концентраций в примере 1 составил 0,9 мг/л, в примере 2 0,6 мг/л (сумма концентраций ауксинов).

Данные эксперимента приведены в таблице 2.

Как видно из таблицы, позитивный градиент концентраций приводит к существенному увеличению прироста каллусной массы по сравнению с верхним контролем (прирост выше в 2,29 раза). Кроме того, наблюдается существенное увеличение прироста по сравнению с нижним контролем (прирост выше в 1,68 раза). Негативный градиент концентраций ауксинов (вариант 4) также приводит к увеличению роста по сравнению с контролем. Однофакторный дисперсионный анализ данных показывает, что влияние позитивного градиента концентраций ауксинов является статистически значимым, поскольку фактический коэффициент Фишера в опыте (4,85) превышает его стандартное значение (4,0) при уровне значимости 5% Таким образом, в опыте наблюдалось увеличение прироста каллусной массы кукурузы под действием среднего позитивного градиента концентрации ауксинов. Величина прироста в этом случае выше, чем в примере 1.

Пример 3 Прирост каллусной массы кукурузы при низких градиентах концентраций ауксинов.

Изучалось влияние градиентов фитогормонов при средних значениях перепада концентрации ауксина. Для этого каллусы, культивировавшиеся при высоких концентрациях ауксинов (по 0,30 мг/л Пиклорам, Дикамба, 2,4 Д) переносят на среду со средними концентрациями гормонов (0,2 мг/л Пиклорам, 0,2 мг/л Дикамба, 0,2 мг/л 2,4 Д) и измеряют относительный прирост каллусной массы. При этом в результате диффузии гормонов из каллуса в среду возникает градиент концентраций фитогормонов, который направлен сверху вниз от каллуса к среде (позитивный градиент вариант 3 по табл.3). В другом варианте опыта каллусы пересаживают со среды со средней концентрацией ауксинов (0,2 мг/л Пиклорам, 0,2 мг/л Дикамба, 0,2 мг/л 2,4 Д) на среду с высокой концентрацией гормонов (0,3 мг/л Пиклорам, 0,3 мг/л Дикамба, 0,3 мг/л 2,4 Д). В этом случае возникающий градиент концентраций направлен снизу вверх (негативный градиент - вариант 4 в табл.1). В качестве контроля в данном случае использовались варианты, в которых каллусы пассировались со среды co средней средней концентрацией ауксинов (0,2 мг/л Пиклорам, 0,1 мг/л Дикамба, 01 мг/л 2,4Д) на такую же среду (нижний контроль вариант 1 в табл.1) и со среды с высоким содержанием ауксинов (по 0,30 мг/л Пиклорама, Дикамбы, 2,4Д) на такую же среду (верхний контроль вариант 2 в табл.1).

В приведенном выше варианте опыта перепад концентраций меньше, чем в примере 2 общий перепад концентраций в примере 2 составил 0,6 мг/л, в примере 3 0,3 мг/л (сумма концентраций ауксинов).

Данные эксперимента приведены в таблице 3.

Как видно из таблицы, позитивный градиент концентраций ауксинов, как и в предыдущем примере, приводит к существенному увеличению прироста каллусной массы по сравнению с верхним контролем (прирост выше в 1,50 раза). Кроме того, наблюдается существенное увеличение прироста по сравнению с нижним контролем (прирост выше в 1,47 раза), т. е. негативный градиент концентраций ауксинов (вариант 4) также приводил к увеличению прироста по сравнению с контролем. Однофакторный дисперсионный анализ данных показывает, что влияние позитивного градиента концентраций ауксинов является статистически значимым, поскольку фактический коэффициент Фишера в опыте (4,81) превышает его стандартное значение (4,00) при уровне значимости 5% Таким образом, в опыте наблюдалось увеличение прироста каллусной массы кукурузы и под действием низкого позитивного градиента концентрации ауксинов. Величина прироста в этом случае несколько ниже, чем в примере 2.

Примеры 1 3 наглядно показывают, что положительный эффект использования градиентов концентраций прослеживается на всем заявленном промежутке концентраций ауксинов, причем наибольший прирост наблюдается при переносе каллусов со среды с 0,3 мг/л каждого ауксина (Пиклорам, Дикамба, 2,4Д) на среду, содержащую по 0,1 мг/л каждого гормона (Пиклорам, Дикамба, 2,4Д).

Приведенные данные показывают, что использование предлагаемого способа позволяет увеличить прирост эмбриогенного каллуса в 1,5-2,2 раза по сравнению с другими схемами культивирования. Кроме того, наблюдается более медленное снижение регенерационной способности каллусов при увеличении возраста культуры.

Формула изобретения

Способ стимулирования роста морфогенного каллуса кукурузы, включающий получение каллусной ткани из экспланта на модифицированной питательной среде Мурасиге Скуга, содержащей ауксины Пиклорам, Дикамба и 2,4 Д, и дальнейшее пассирование на свежую питательную среду того же состава, отличающийся тем, что после получения каллусной ткани, начиная с первого пассажа, изменяют содержание ауксинов так, что в нечетном пассаже концентрацию Пиклорама, Дикамбы и 2,4 Д доводят до 0,2 0,4 мг/л каждого, а в четных пассажах концентрацию снижают до уровня не более 0,2 мг/л каждого.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к сельскому хозяйству и биотехнологии и может быть использовано в процессе укоренения растений

Изобретение относится к сельскому хозяйству и биотехнологии и может быть использовано в процессе микроразмножения различных растений

Изобретение относится к сельскохозяйственной биотехнологии и может быть использовано в генетике и селекции растений

Изобретение относится к области биотехнологии, а именно к способам размножения стевии (Stevia rebaudiana L.) с помощью культуры ткани in vitro, которые могут использоваться для нужд пищевой и медицинской промышленности

Изобретение относится к биотехнологии, в частности к культивированию клеток растений стефании гладкой in vitro,и предназначено для получения при глубинном культивировании штамма, ценных биологически активных веществ, в частности алкалоида стефарина, на базе которого создан эффективный препарат, зарегистрированный под названием "стефаглабрин сульфат", уменьшающий трофические расстройства денервированных конечностей, способствующий ранней и более полной регенерации поврежденных нервов, а также обладающий антихолинэстеразным действием

Изобретение относится к биотехнологии растительных клеток и касается питательной среды для выращивания культуры ткани с целью получения лекарственных препаратов

Изобретение относится к биотехнологии и может быть использовано для массового размножения растений в условиях культуры ткани

Изобретение относится к сельскому хозяйству, а именно к селекции растений и к селекционным биотехнологиям, и может использоваться для получения сортовых модифицированных форм и нового исходного материала картофеля

Изобретение относится к биотехнологии в частности к культуре тканей и органов, и может быть использовано в питомниководстве для микроклонального размножения новых перспективных сортов, а также в генной инженерии для генетической трансформации растений малины посредством бактериальных векторов

Изобретение относится к области сельского хозяйства и биотехнологии, в частности к способам микроклонального размножения растений и безвирусному семеноводству

Изобретение относится к области сельского хозяйства, в частности к сохранению генофонда вегетативно размножаемых растений

Изобретение относится к сельскому хозяйству и может быть использовано для ускоренного размножения посадочного материала яблони на основе применения методов культуры ткани

Изобретение относится к сельскому хозяйству и биотехнологии и может быть использовано в процессе укоренения растений

Изобретение относится к области биотехнологии, в частности к устройствам для стерильного выращивания растительных эксплантов

Изобретение относится к сельскому хозяйству, а более конкретно к культивированию in vitro, выделенных из семян зародышей и может быть использовано для размножения сортов и видов растений с плохо прорастающими семенами

Изобретение относится к сельскому хозяйству, а более конкретное - к вегетативному размножению растений в культуре ткани in vitro, например, винограда, полыни лимонной, яблони, черешни, картофеля, стевии, гвоздики и т.д
Наверх