Способ определения параметров точной модели динамической системы

 

Способ предназначен для использования в области технических измерений и испытаний и моделирования различных конструкций и технологических процессов, представляющих собой сложные динамические системы со счетным количеством точек контроля входных и выходных параметров. На систему воздействуют известным динамическим сигналом. Измеряют передаточные функции между всеми парами точек контроля, а также в точках воздействия на систему известным динамическим сигналом, с учетом всех осей координат. Производят расчет элементов матрицы параметров модели для каждой частоты заданного диапазона. Статическую составляющую вычисляют из значений передаточных функций при нулевой частоте. Динамическую составляющую для каждый частоты заданного диапазона определяют как разность упомянутых матриц. Способ обеспечивает повышение точности определения параметров модели и сокращение потерь информации из экспериментальных данных.

Изобретение относится к области технических измерений и может быть использовано при испытаниях и моделировании поведения различных конструкций и технологических процессов, представляющих собой сложные динамические системы, имеющие счетное количество точек контроля их состояния по входным и выходным параметрам.

Известен способ определения параметров модели динамической системы, заключающийся в измерении передаточных функций (авт.св.СССР N 637755, кл. G 01 M 7/02, 1978).

Существенным недостатком указанного способа является то, что в точках контроля из рассмотрения исключается часть координат системы, например, вращение опор турбогенератора. Это ведет к существенному снижению точности определения параметров модели динамической системы.

Определение параметров модели динамической системы из результатов измерений существенно приближенно, что также ведет к существенному снижению точности.

Наиболее близким к предлагаемому по технической сущности и достигаемому результату является способ определения параметров модели динамической системы, контролируемый в заданном числе точек, включающий измерение передаточных функций (Ионин Д.А., Яковлев Е.И., Современные методы диагностики магистральных газопроводов. - Л.: Недра, 1987, с.147 - 148).

Существенным недостатком указанного способа является то, что определение параметров системы газоснабжения из результатов измерений осуществляется приближенно. А приоритетно задаются значения первоначальных параметров модели, которые впоследствии уточняются путем последовательных приближений до достижения заданного отклонения от экспериментальных данных в некотором заранее определенном диапазоне частот. Это ведет к существенному снижению точности определения параметров модели и потере части информации из экспериментальных данных.

Техническим результатом изобретения является повышение точности определения параметров модели и сокращение потерь информации из экспериментальных данных.

Технический результат достигается тем, в способе определения параметров точной модели динамической системы, контролируемой в заданном числе точек, включающем измерение передаточных функций, согласно изобретению измеряют передаточные функции g(ilkw) между всеми парами точек контроля входных и выходных параметров динамической системы, включая сами точки, с учетом всех осей координат, и производят расчет элементов матрицы параметров модели для каждой частоты заданного диапазона из соотношения статическую составляющую элементов матрицы параметров модели вычисляют из значений функций при нулевой частоте по соотношению а динамическую составляющую элементов матрицы параметров модели для каждой частоты заданного диапазона определяют как разность матриц (lk -clk) где Gkl - алгебраическое дополнение элемента g(ilkw) в определителе , Gokl - алгебраическое дополнение элемента g(wlk=0) в определителе det, w - круговая частота, i - мнимая единица,
l, k = 1, 2, 3, ..., n - номера точек контроля системы, между которыми измеряют передаточные функции.

Сущность способа иллюстрируется следующими примерами.

Пример. С помощью механического вибратора возбуждают колебания опор турбоагрегатов в горизонтальном и вертикальном направлениях. Последовательно, переходя от точки к точке контроля системы, нумеруют по возрастающей от 1 до n все контролируемые в них параметры с учетом их осей координат. Этот номер присваивают как идентификатор соответствующего измерения в конкретной точке. В каждой точке контроля системы 1 < l < n воздействуют на систему по соответствующему данной точке параметру известным динамическим сигналом (например, синусоидальным, импульсным или иным). В каждом эксперименте во всех точках контроля системы 1 < k < n измеряют передаточные функции g(ilkw), включая и точку воздействия на систему известным динамическим сигналом, т. е. при l = k. Из измеренных передаточных функций составляют квадратную матрицу передаточных функций . Из матрицы передаточных функций производят расчет элементов матрицы точной модели данной динамической системы для каждой частоты заданного диапазона из соотношения

Статическую составляющую элементов матрицы параметров точной модели, необходимую для определения их динамической составляющей на каждой частоте, вычисляют из значений передаточных функций при нулевой частоте по соотношению

где Gkl - алгебраическое дополнение элемента g(ilkw) в определителе ,
Gokl - алгебраическое дополнение элемента g(wlk=0) в определителе ,
w - круговая частота,
i - мнимая единица,
l, k = 1, 2, 3, ..., n - номера точек контроля.

Динамическую составляющую элементов матрицы параметров точной модели сложной динамической системы, зависящую от ее инерционных и диссипативных свойств, определяют для каждой частоты как разность матриц (lk -clk)
Использование предложенного способа позволяет определять из результатов прямых измерений в ограниченном числе точек сложной динамической системы, обладающей свойством линейности, параметры ее точной модели, что ведет к повышению точности управления указанной системы, к упрощению исследования динамики ее поведения и реальным сокращениям потерь информации из полученных экспериментальных данных.


Формула изобретения

Способ определения параметров точной модели линейной динамической системы, контролируемой в заданном числе точек, включающий воздействие на систему известным динамическим сигналом и измерение передаточных функций, отличающийся тем, что измеряют передаточные функции g(ilkw) между всеми парами точек контроля входных и выходных параметров динамической системы, а также в точках воздействия на систему известным динамическим сигналом, с учетом всех осей координат, и производят расчет элементов матрицы параметров модели для каждой частоты заданного диапазона из соотношения
A = (lk) = {Gkl/det[g(ilkw)]} ,
статическую составляющую элементов матрицы параметров модели вычисляют из значений передаточных функций при нулевой частоте по отношению
C = (lk) = {Gkl/det[g(wlk=0)]} ,
а динамическую составляющую элементов матрицы параметров модели для каждой частоты заданного диапазона определяют как разность матриц
(lk-Clk),
где Gkl - алгебраическое дополнение элемента g(ilkw) в определителе det[g(ilkw)],
Gkl - алгебраическое дополнение элемента g(wlk=0) в определителе det[g(w=lki0)],
W - круговая частота,
i - мнимая единица,
l, k = 1, 2, 3, ....., n - номера точек контроля системы, между которыми измеряют передаточные функции.



 

Похожие патенты:
Изобретение относится к технике испытаний энергетического оборудования, а именно электрических аппаратов с обмотками, преимущественно статических, типа трансформаторов или реакторов

Изобретение относится к испытательной технике, а именно к ручным ударным устройствам

Изобретение относится к испытательной технике, в частности к стендам для испытания изделий на воздействие ускорений

Изобретение относится к технике прочностных испытаний, а именно к установкам для испытания рабочих колес турбомашин на прочность

Изобретение относится к области измерений динамических параметров упругих систем со сложной конструкцией, имитируемой многомерными пространственно ориентированными колебательными моделями с многоканальным входом, подверженных воздействию случайных вибронагрузок, приложенных в опорных точках конструкции, и может быть использовано для определения в широкополосном диапазоне частот резонансных характеристик упругих систем с несимметрично размещаемыми во внутриблочных конструкциях элементами упругой подвески, упругой подвески многомоторной установки, распределенных несущих конструкций из упругих элементов, многоканальных систем групповой амортизации бортового оборудования

Изобретение относится к испытательной технике, а именно к стендам для ударных испытаний, и может быть использовано в стендах, предназначенных для испытаний контейнеров для транспортировки и/или хранения отработавшего ядерного топлива (ОЯТ)

Изобретение относится к контрольно-измерительной технике, а именно к стенам для вибродиагностики изделий по их амплитудно-частотным характеристикам, и может быть использовано для вибродиагностики упругих подвесов динамически настраиваемых гироскопов

Изобретение относится к области испытательной техники, в частности к испытаниям объектов на воздействие ударных нагрузок

Изобретение относится к испытательной технике, а именно к способам испытания конструкций на ударные нагрузки, и предназначено для использования при испытаниях мягкой мебели на прочность, например, осуществляемых в целях сертификации данного вида однородной продукции
Изобретение относится к технике прочностных испытаний, а именно к способам испытаний на вибропрочность и долговечность объектов авиационного ракетного вооружения, и может быть использовано также для испытаний различных машин и оборудования, подвергающихся при эксплуатации комплексному воздействию статической и вибрационной нагрузок

Изобретение относится к испытаниям на вибрацию и может быть использовано при испытаниях изделий на случайную одномерную вибрацию для уменьшения уровня мощности паразитной боковой вибрации при заданном уровне мощности в вертикальном направлении

Изобретение относится к измерительной технике и может быть использовано для построения математической модели эквивалентной упругой системы металлорежущего станка в зоне резания, что необходимо для разработки систем автоматического управления резанием, а так же для анализа динамических явлений при резании

Изобретение относится к испытательной технике, а именно к стендам для динамических испытаний элементов воздушного винта летательного аппарата, например, лопастей винта вертолета, при комбинированных нагрузках

Изобретение относится к эксплуатации и строительству зданий и сооружений и может быть использовано для определения их физического состояния
Наверх