Опреснительное устройство

 

Изобретение относится к области опреснения морской воды с попутным получением при этом более концентрированных растворов, а также может быть использовано для электрохимической обработки сточных вод на предмет их очистки. Устройство состоит из корпуса, четырех с электроизоляционным покрытием металлических электродов, из которых два внутренних перфорированы и подсоединены к разноименным полюсам источника постоянного или пульсирующего тока, а два наружных сплошных также подсоединены к разноименным полюсам источника постоянного или пульсирующего тока, но большего напряжения. При этом все электроды выполнены в виде прямоугольных пластин, расположенных параллельно, что обеспечивает наличие однородного электрического поля между ними. Для увеличения эффективности в работе устройства между сплошными наружными пластинами-электродами и соответственно внутренними перфорированными пластинами-электродами, можно установить несколько промежуточных перфорированных пластин-электродов с подачей на каждую более удаленную от осевой линии устройства большего напряжения того же знака, чем на расположенную ближе к оси. Предложенное опреснительное устройство обеспечивает возможность получения дешевой пресной воды. 1 з.п.ф-лы, 2 ил.

Изобретение относится к области опреснения морской воды с попутным получением при этом более концентрированных солевых растворов, а также может быть использовано для электрохимической обработки сточных вод на предмет их очистки.

Известно устройство по патенту США N 3687834, кл. 204186, 1972 г., представляющее собой изолированный канал, в стенках которого размещены изолированные от жидкости электроды, а корпус выполнен с отводными отверстиями.

Эти электроды получают заряд от внешнего источника или специального материала электрета, создающего постоянное поле, аналогичное магнитному, и имеющего заряд одного знака на одной стороне и заряд равного и противоположного знака на другой стороне.

Недостатком данного устройства является то, что электроды, создающие электростатическое поле (электреты), установлены локально у входных сечений выходных патрубков, что существенно сужает воздействие этих полей на поток воды, т.к. электростатические поля взаимодействуют с частицами потока локально, только в местах расположения электретов; - локально расположенные электроды создают множество неравномерно расположенных полей; - электроды (электреты) монтируются внутри корпуса сепаратора в количестве, равном количеству выходных патрубков.

Эти недостатки снижают эффективность работы устройства и его производительность, а также усложняют его изготовление.

Известно также устройство "Электродиализатор" по а.с. СССР N 867391, кл. C 02 F 1/469, принятое в качестве прототипа и содержащее корпус, две ионопроницаемые перегородки, выполненные в виде сетки из электропроводного материала, покрытого изоляцией, и являющиеся электродами, подсоединенными к разноименным полюсам автономного источника постоянного тока.

Недостатком данного устройства является то, что оно является устройством порционного действия и притом с ограниченным временем работы, т.к. у электродов спустя некоторое время образуются ионные облака, которые препятствуют перемещению к ним ионов соответствующего знака, т.е. устройство запирается.

Задачей изобретения является увеличение эффективности и производительности устройства, а также упрощение технологии его изготовления.

Указанная цель достигается применением вместо трех концентрически расположенных с электроизоляционным покрытием металлических труб, из которых наружная сплошная, а две внутренние перфорированы и центрального проходящего по оси труб, также с электроизоляционным покрытием, металлического стержня, четырех электродов, выполненных в виде прямоугольных с электроизоляционным покрытием металлических пластин, из которых две наружные - сплошные, а две внутренние - перфорированы.

Устройство состоит из четырех металлических с электроизоляционным покрытием прямоугольных пластин-электродов - двух наружных сплошных 1 и 2 и двух внутренних перфорированных 3 и 4. Торцы всех четырех пластин - электродов заделаны герметически в левую часть 5 и правую часть 6 корпуса, соединенных центральной частью корпуса 7 в одно целое. Изготовлены все части корпуса из электроизоляционного материала. В левой части корпуса 5 образована полость 8, служащая для успокоения потока, куда через трубку 9 (по стр. А) поступает соленая вода, которая через канал 10 поступает в камеру разделения 11. Через отверстия в перфорированных пластинах - электродах 3 и 4 вода поступает соответственно в полости 12 и 13.

В правой части корпуса 6 имеется полость 14, куда через отверстия 15 и 16 поступает вода соответственно из полостей 12 и 13.

Из камеры разделения 11, через трубку 17, опресненная вода (по стр. B) поступает к потребителю, а по трубке 18, из полости 14 (по стр. C), отводится соленая рапа, которая может быть использована в химической промышленности.

К пластинам - электродам 1, 2, 3 и 4 подсоединены соответственно провода 19, 22, 20 и 21 с клеммами, к которым подводится напряжение постоянного или пульсирующего тока.

Если, к примеру, к пластинам - электродам 1 и 3 подсоединено отрицательное напряжение, то к пластинам - электродам 2 и 4 должно быть подведено положительное напряжение.

При этом величина напряжения, подводимого к сплошным пластинам-электродам 1 и 2 (например, соответственно -380 и +380), больше напряжения, подводимого к перфорированным пластинам-электродам 3 и 4 (например, соответственно -220 и +220).

Для увеличения эффективности работы устройства между сплошными наружными пластинами-электродами 1 и 2 и соответственно внутренними перфорированными пластинами-электродами 3 и 4 можно установить несколько промежуточных перфорированных пластин-электродов с подачей на каждую, более отдаленную от осевой линии устройства, большего напряжения того же знака, чем на ближе расположенную к оси.

Длина камеры разделения 11 выбрана такой, чтобы под действием электрического поля анионы и катионы (скорость их перемещения невелика), двигаясь по разным траекториям внутри камеры разделения, успели пройти путь из любой точки этой камеры к пластинам-электродам 2 и 3 и, через перфорированные отверстия в них, в полости 12 и 13.

Так как все пластины-электроды 1, 2, 3 и 4 покрыты с двух сторон электроизоляционным материалом, на них не происходят окислительно-восстановительные процессы.

Благодаря электрическим полям, созданным в полостях 11, 12 и 13, обеспечивается непрерывное перемещение ионов по всей ширине камер и тем самым обеспечивается опреснение морской воды.

Для оптимального течения процесса разделения ионов в камере разделения 11 расход воды и размеры этой камеры выбраны такими, чтобы поток воды был ламинарным.

Работа устройства.

Морская вода (раствор) самотеком или под небольшим напором (поток должен быть ламинарным) непрерывно подается через трубку 9 (по стр. A) (фиг. 1) в полость 8, где поток успокаивается и по трубке 10 поступает в камеру разделения 1, а оттуда через отверстия в пластинах-электродах 3 и 4 заполняет соответственно полости 12 и 13.

Под действием постоянного или пульсирующего электрического поля, созданного в камере разделения (полость 11), происходит разделение ионов раствора на два потока. Катионы (Na+, K+, Ca2+, Mg2+ и др.) перемещаются к пластине-электроду 3 (к которой подается отрицательный потенциал) и через перфорацию, под действием большего отрицательного потенциала, приложенного к пластине-электроду 1, вместе с частью раствора попадают в полость 12, откуда через канал 15 попадают в полость 14. А анионы (Cl-, SO42-, Br- и др.) перемещаются к пластине-электроду 4 и через перфорацию в ней, под действием большего положительного потенциала, приложенного к пластине-электроду 2, вместе с частью раствора попадают в полость 13, откуда через канал 16 также поступают в полость 14. Здесь происходит соединение анионов и катионов в атомы и образуется более концентрированный раствор, который выводится через трубку 18 (по стр. C).

Основной поток морской воды (раствора), освобожденный от значительной части анионов и катионов, через трубку 17 (по стр. B) в виде пресной воды поступает к потребителю.

Для эффективного течения процесса разделения ионов в камере разделения 11 расход морской воды и площадь сечения камеры выбираются такими, чтобы поток был ламинарным.

Пульсирующий ток способствует освобождению ионного облака от электродов и перемещению его вдоль оси камеры разделения к выходу.

Предлагаемое опреснительное устройство обеспечит возможность получения дешевой пресной воды из морской воды благодаря тому, что на пластинах-электродах не происходят окислительно-восстановительные процессы.

Батареи предлагаемых устройств позволят увеличить их производительность.

Формула изобретения

1. Опреснительное устройство, содержащее корпус и электроды, отличающееся тем, что электроды, к которым подают постоянный либо пульсирующий ток, выполнены в виде металлических с электроизоляционным покрытием прямоугольных параллельно расположенных пластин, при этом два внутренних перфорированных и два наружных сплошных электрода подсоединены к разноименным полюсам источника тока, и к внутренним электродам подают ток меньшего напряжения, чем к наружным.

2. Устройство по п.1, отличающееся тем, что между наружными сплошными электродами и внутренними перфорированными дополнительно установлены промежуточные перфорированные электроды с подачей на каждый более отдаленный от осевой линии устройства электрод большего напряжения того же знака, чем на расположенный ближе к оси электрод.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:
Изобретение относится к очистке воды от примесей

Изобретение относится к области добычи полезных ископаемых, в частности к извлечению сероводорода из сероводородсодержащих вод, преимущественно из глубинных слоев Черного моря

Изобретение относится к области добычи полезных ископаемых, в частности к извлечению сероводорода из сероводородсодержащих вод, преимущественно из глубинных слоев Черного моря

Изобретение относится к области добычи полезных ископаемых, в частности к извлечению сероводорода из сероводородсодержащих вод, преимущественно из глубинных слоев Черного моря

Изобретение относится к обезвреживанию жидких радиоактивных отходов (ЖРО) спецпрачечных радиохимических производств и АЭС, содержащих органические и неорганические загрязнители

Изобретение относится к устройствам для магнитной обработки жидкостей, применяемых, в частности, в химической, нефтяной и нефтеперерабатывающей промышленности, медицине, сельском хозяйстве

Изобретение относится к области направленного изменения физико-химических и биологических свойств воды и водных систем и предназначено для использования в растениеводстве, технике и т.д

Изобретение относится к области обработки воды в процессе промывки деталей при нанесении гальванических покрытий, изготовления печатных плат, травления цветных металлов
Изобретение относится к области подготовки питьевой воды и может быть использовано в коммунальном хозяйстве, пищевой промышленности и медицине

Изобретение относится к синтезу макрогетероциклических соединений, в частности к новому соединению - 5,36 : 18,23 : диимино-7,10 : 13,16 : 25,28 : 31,34- тетратио-/c,s/-дибензо-1,6,8,9,14,15,17,22,24,15,30,31-додекааза-11,12,27,28-тетратиоциклодотриаконтену, обладающему способностью к избирательному поглощению катионов стронция и свинца из их водных щелочных растворов

Изобретение относится к обезвреживанию жидких радиоактивных отходов, содержащих поверхностно-активные и неорганические моющие компоненты, ультрафильтрацией

Изобретение относится к способам очистки производственных сточных вод, содержащих белок, и может быть использовано при очистке стоков предприятий пищевой и рыбной промышленности с возможностью утилизации выделенного продукта

Изобретение относится к способам очистки производственных сточных вод, содержащих белок, и может быть использовано при очистке стоков предприятий пищевой и рыбной промышленности с возможностью утилизации выделенного продукта

Изобретение относится к области безреагентной очистки природных или сточных вод и может быть использовано в технике очистки воды на предприятиях жилищно-коммунального, сельского хозяйства, в химической и других отраслях народного хозяйства

Изобретение относится к средствам обработки водных сред от радиоактивных загрязнений сорбцией
Наверх