Способ повышения циклической прочности деталей газотурбинных двигателей из жаропрочных сплавов на основе никеля

 

Изобретение относится к металлургии. Способ повышения циклической прочности деталей газотурбинных двигателей из жаропрочных сплавов на основе никеля включает нагрев детали выше 600oC, но ниже температуры фазовых переходов и последующее интенсивное охлаждение нагретой детали со скоростью отвода теплоты, обеспечивающей достижение коэффициента теплоотдачи не менее (1,510 - 2,510)104 Вт/м2oC. Охлаждение может быть проведено жидкостью под давлением, причем давление может соответствовать 5-6 атм. Изобретение позволяет повысить усталостные характеристики газотурбинных двигателей. 2 з. п.ф-лы, 2 ил.

Изобретение относится к области упрочнения деталей, изготовляемых их жаропрочных материалов, и может быть осуществлено на предприятиях, производящих газотурбинные двигатели.

В настоящее время для повышения усталостной прочности деталей из жаропрочных сплавов используются методы поверхностного пластического деформирования, в частности упрочнение микрошариками [1].

Эти методы основаны на деформационном упрочнении (наклепе) поверхностного слоя, следствием которого является наведение сжимающих остаточных напряжений. Однако при высоких температурах наклеп приводит к неблагоприятным последствиям в связи с тем, что он интенсифицирует процессы окисления и испарения некоторых легирующих элементов с поверхности, а также дораспад твердого раствора с последующим охрупчиванием поверхностного слоя. Кроме того, наклеп содействует резкому возрастанию диффузионной подвижности атомов, ускоряющей процессы возврата и рекристаллизации. По этим причинам в процессе эксплуатации относительно быстро теряется эффект упрочнения, что ограничивает срок службы деталей.

Известен способ модернизированной термообработки для повышения низкоциклической высокотемпературной усталостной прочности литейного никелевого сплава [2].

Цель изобретения - разработка такого способа формирования на поверхности детали благоприятного напряженного состояния, при котором практически исключается возникновение наклепа и эффект повышения сопротивляемости усталостному разрушению при высоких температурах проявляется только за счет благоприятного влияния остаточных напряжений сжатия.

Эта цель достигается тем, что в предлагаемом способе, заключающемся в нагреве любым методом поверхности детали до температуры начала термопластических деформаций с последующим интенсивным охлаждением, отличающийся тем, что создает большие градиенты температур на поверхности путем интенсивного охлаждения нагретых деталей жидкостью под давлением, причем температура нагрева детали значительно ниже фазовых переходов и структурных изменений.

При резком охлаждении в поверхностном слое возникают термопластические деформации, в результате которых после остывания детали возникают остаточные напряжения сжатия. При этом возникающие остаточные деформации не превосходят величины = 0,4 - 0,5% относительного удлинения. Однако, как это следует из теоремы Генки, они достаточны для формирования остаточных напряжений на уровне предела текучести упрочняемого материала. При упрочнении методами поверхностного пластического деформирования относительные деформации достигают величин = 10-15% и более.

Формирование остаточных напряжений в большей степени зависит от скорости отвода теплоты от упрочняемой поверхности, которая определяется коэффициентом теплоотдачи. При термоупрочнении жаропрочных сплавов он должен быть не ниже ( = 1,5 10 - 2,5 10) 104 Вт/м2 oC, что достигается высоконапорным душевым охлаждением. При более низких коэффициентах = (1-3) 104, которые характерны для хорошо циркулируемой проточной воды, наведение эпюры сжимающих остаточных напряжений возможно лишь на материалах, предел текучести которых не превышает величины т = 300 - 350 МПа.

На рис. 1 приведены значения коэффициента для жаропрочных сплавов в зависимости от давления, откуда следует, что необходимые значения могут быть получены только при давлении охлаждаемого душа P 4 атм.

На рис. 2 выполнено графическое построение, позволяющее определить остаточные напряжения, возникающие в зависимости от температуры нагрева, давления, толщины детали для жаропрочного сплава ЖС6-У. Номограмма построена на основании соответствующих аналитических решений. Как следует из рассмотрения этой номограммы толщина детали, особенно в области h = 0,5-2,0 мм имеет решающее значение при наведении остаточных напряжений необходимого уровня, формирование которых возможно при нагреве T600oC и охлаждении душевым способом при P > 4 атм. Изложенное имеет немаловажное значение при упрочнении лопаток газовых турбин, у которых толщина выходных кромок h 1,0 мм.

В качестве иллюстрации эффективности предлагаемого способа ниже приводится результаты сравнительных исследований.

1. Усталостные испытания на плоских алитированных образцах из сплава ЖС6-У при асимметрии цикла равном m = 200 МПа и температуре испытания 900oC после термоупрочнения на режиме: T = 750oC, P = 5 атм, показали повышение предела выносливости на 50-60%.

2. Лопатки турбины из сплава ЖС6К-ВИ изготовленные литьем с направленной кристаллизацией после упрочнения на режиме T = 750oC, P = 4 атм, испытанные при T = 20oC на базе N = 2107 циклов, показали повышение выносливости на 60% с -1 = 200 МПа до = 320 МПа.

3. Термоупрочнение лопаток на режиме: T = 600oC, P = 5 атм, из сплава ЭИ437Б на базе N = 2107 циклов показало повышение выносливости на 33% ( с -1 = 210 МПа до -1 = 280 МПа). После наработки в составе изделия в течение = 10000 ч предел выносливости исходных термоупрочненных лопаток увеличился до -1 = 300 МПа, т.е. вырос на 43%.

4. Остаточные напряжения, наведенные при термопластическом упрочнении при повышенных температурах, относительно устойчивы. Образцы из сплава ЖС6Ф упрочнялись микрошариками и термопластическим упрочнением. Испытания при T= 950oC в среде аргона показали, что после упрочнения микрошариками исходные остаточные напряжения 0 = -1100 МПа через = 50 ч выдержки практически полностью релаксировали ( 0 = - 100 МПа ). Соответственно остаточные напряжения после термоупрочнения и выдержки в течение = 100 ч снизились с 0 = -800 МПа до 0 = -550 МПа, т.е. на 30%, оставаясь на этом уровне в дальнейшем.

Устойчивое напряженное состояние в процессе эксплуатации изделия в подповерхностном слое формирует зону переплетенных дислокаций, которая служит барьером против последующих дислокационных процессов, приводящих к образованию первоначальных очагов разрушения. По этой причине усталостные характеристики упрочненных деталей с течением времени могут даже возрасти.

Источники информации, принятые во внимание при экспертизе: 1. Н. Д. Кузнецов, В.И. Цейтлин. Эквивалентные испытания газотурбинных двигателей. - М.: Машиностроение, 1976, 210 с.

2. (JP56 - 3903A (Кавасаки Дзюкой К.К.), 27.01.81, C 22 F 1/10, C 22 C 19/03, C 22 C 19/05, реферат).

Формула изобретения

1. Способ повышения циклической прочности деталей газотурбинных двигателей из жаропрочных сплавов на основе никеля, включающий нагрев и последующее интенсивное охлаждение, отличающийся тем, что нагрев детали проводят выше 600oС, но ниже температуры фазовых переходов, а последующее охлаждение нагретой детали осуществляют со скоростью отвода теплоты, обеспечивающей достижение коэффициента теплоотдачи не менее (1,5 10 - 2,5 10) 104 Вт/м2 oС.

2. Способ по п.1, отличающийся тем, что охлаждение проводят жидкостью под давлением.

3. Способ по п.2, отличающийся тем, что охлаждение проводят жидкостью под давлением 5 - 6 атм.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к способам термообработки суперсплавов на основе никеля со следующим химическим составом, мас.%: Сr 11-13, Со 8-17, Мо 6-8, Ti 4-5, Al 4-5, Nb 1,5, Hf 1, С, В, Zr каждый 510-4, Ni - остальное до 100, или Сr 12-15, Co 14,5-15,5, Мо 2-4,5, W 4,5, Аl 2,5-4, Ti 4-6, Hf 0,5, С 110-4-310-4, В 110-4-510-4, Zr 210-4-710-4, Ni - остальное до 100

Изобретение относится к области термической обработки конструкций, выполненных из дисперсионно-твердеющих сплавов и работающих в условиях как высоких, так и низких температур, вибраций и агрессивных сред, в частности обработке паяно-сварных конструкций, содержащих детали из мартенситно-стареющей стали и дисперсионно-твердеющего никелевого сплава

Изобретение относится к области металлургии и используется при производстве особонагруженных деталей с направленно закристаллизованной и монокристаллической структурой из жаропрочных материалов нового класса на основе легированного интерметаллида Ni3Al (сопловые лопатки, экраны камер сгорания и др

Изобретение относится к обработке металлов давлением, в частности изготовлению деталей типа дисков с конической, полусферической и другими осесимметричными формами из малопластичных и труднодеформируемых материалов, например, из жаропрочных сплавов

Изобретение относится к области металлургии жаропрочных сложнолегированных никелевых сплавов, а именно к способу термообработки жаропрочных дисков ГТД

Изобретение относится к области металлургии, в частности к термообработке деталей из жаропрочных дисперсионно-твердеющих сплавов на никель-хромой основе перед пайкой

Изобретение относится к области металлургии и может быть использовано при ремонте механических повреждений лопаток газотурбинного привода

Изобретение относится к области металлургии и может быть использовано при дисперсионном твердении заготовок и деталей из никелевого сплава ХН68ВКТЮ

Изобретение относится к металлургии сплавов, а именно спеченных жаропрочных сплавов на основе никеля, получаемых формованием гранул в изостатических условиях, и может быть использовано для термообработки конструкций, изготовленных из данных сплавов

Изобретение относится к области энергетического машиностроения, в частности к изготовлению двухслойных паяных конструкций, содержащих детали из дисперсионно-твердеющего сплава на никелевой основе и высокотеплопроводного металла, применяемых в узлах энергетических агрегатов, работающих в широком интервале температур и давления, а также в среде жидкого и газообразного кислорода

Изобретение относится к энергетическому машиностроению, в частности к изготовлению двухслойных паяных конструкций, содержащих детали из дисперсионно-твердеющего сплава на никелевой основе и сплава на основе меди, применяемых в узлах вращения энергетических агрегатов и работоспособных в условиях высоких скоростей, повышенных динамических нагрузок и в среде сильного окислителя
Изобретение относится к области упрочнения лопаток, изготавливаемых из жаропрочных материалов, и может быть использовано на предприятиях, эксплуатирующих газотурбинные двигатели

Изобретение относится к железоникелевому суперсплаву типа IN 706

Изобретение относится к способу термической обработки в магнитном поле магнитного компонента, например магнитного сердечника или дифференциального выключателя из мягкого магнитного материала с низкими анизотропиями, такого как сплав FeNiMo 15-80-5, аморфный сплав на основе Со или нанокристаллический сплав FeSiCuNbB

Изобретение относится к области металлургии, а именно к термической обработке жаропрочных высоколегированных деформируемых сплавов на никелевой основе и изделий из них - высоконагруженных деталей, работающих при температурах выше 650oС, в частности дисков ГТД
Наверх