Способ перекачки газа по действующему трубопроводу и устройство для его осуществления

 

Изобретение относится к области насосо- и компрессоростроения и может быть использовано в нефтяной, газовой и других отраслях промышленности для перекачки жидкостей и газов. В способе перекачки газа по действующему трубопроводу, включающем основной цикл сжатия газа путем эжекционного захвата последнего струей рабочей жидкости из нагнетательного трубопровода, их смешение с образованием единого потока, компремирование газа в рабочей камере струйного аппарата и разделение газожидкостной смеси в сепараторе с возвратом рабочей жидкости в приемный трубопровод для жидкости, и дополнительный цикл сжатия газа до давления, достаточного для вытеснения газа в нагнетательный трубопровод для газа, дополнительный цикл сжатия осуществляют после полного замещения в сепараторе жидкости газом в конце основного цикла посредством подачи в сепаратор одновременно с газожидкостной смесью из струйного аппарата дополнительного количества жидкости из нагнетательного трубопровода для рабочей жидкости. В устройстве для перекачки газа по действующему трубопроводу, включающем струйный аппарат с рабочей и приемной камерами и с соплом, подключенный к выходу рабочей камеры сепаратор, выход по газу которого подсоединен к нагнетательному трубопроводу для газа с установленным на нем обратным клапаном, приемный трубопровод для рабочей жидкости с установленным на нем силовым насосом, подключенным через нагнетательный трубопровод к полости сопла струйного аппарата, к приемной камере которого подсоединен приемный трубопровод для газа с установленным на нем обратным клапаном, и двухпозиционный золотниковый клапан с регулятором привода, золотниковый клапан установлен на выходе сепаратора по жидкости и в одном из рабочих положений подключает его через регулятор расхода к приемному трубопроводу для жидкости, а в другом - сообщает через другой регулятор расхода с нагнетательным трубопроводом для рабочей жидкости. Техническим результатом изобретения является снижение энергоемкости процесса перекачки газа за счет уменьшения гидравлических потерь энергии в дополнительном цикле сжатия газа, а также уменьшение объема жидкости, попадающей в газовый поток, за счет непрерывной сепарации газожидкостной смеси на протяжении обоих циклов сжатия газа. 2 с. и 2 з.п.ф-лы, 1 ил.

Изобретение относится к области компрессоростроения, насосостроения и вакуумной техники и может быть использовано в нефтяной, газовой и других отраслях промышленности для перекачки газов.

Известен способ сжатия и перекачки газа, включающий цикл эжекционного захвата газа струей рабочей жидкости, их смешение с образованием единого потока, сжатие газа в рабочей камере струйного аппарата и цикл эжекционной откачки выделяющегося из потока газа при формировании локальных вихревых зон (см. патент SU N 1838671, F 04 F 5/24, 1991).

Недостатком известного способа является высокая энергоемкость процесса сжатия и перекачки газа из-за наличия двух последовательных циклов малоэффективного эжекционного энергообмена между рабочей и перекачиваемой средой.

Наиболее близким к предлагаемому изобретению является способ перекачки газа, включающий первый цикл эжекционного захвата газа струей рабочей жидкости, их смешение с образованием единого потока и сжатие газа в рабочей камере струйного аппарата, подачу газожидкостной смеси в сепаратор для разделения газа и рабочей жидкости с последующим вторым циклом дополнительного сжатия газа, повторно подводимого к рабочей струе рабочей жидкости, но при более высоком давлении (см. патент RU N 2100662, F 04 F 5/54, 1996).

Также известно устройство для перекачки газа по действующему трубопроводу, включающее струйный аппарат с рабочей и приемной камерами и соплом, приемные трубопроводы для рабочей жидкости и газа, нагнетательный трубопровод для газа, сепаратор и двухпозиционный золотниковый клапан, подключающий выход сепаратора по газу в одном из рабочих положений к приемному трубопроводу для газа, а в другом - к нагнетательному трубопроводу (см. патент RU N 2100662 F 04 F 5/54, 1996).

Недостатком известного способа и устройства является высокая энергоемкость, обусловленная тем, что на протяжении и первого, и второго цикла при передаче энергии от жидкости к перекачиваемому газу наблюдаются высокие потери энергии, вызванные перемешиванием образуемой газожидкостной смеси и появлением интенсивных вихревых возвратных потоков, направленных навстречу потоку рабочей жидкости. Кроме того, значительная часть рабочей жидкости уходит вместе с перекачиваемым газом, что в ряде случаев усложняет процесс осушки и последующей подготовки газа.

Задачей изобретения является снижение энергоемкости процесса перекачки газа за счет уменьшения гидравлических потерь энергии в дополнительном цикле сжатия газа, а также уменьшение объема жидкости, попадающей в газовый поток, за счет непрерывной сепарации газожидкостной смеси на протяжении первого и дополнительного циклов сжатия газа.

Поставленная задача достигается тем, что в способе перекачки газа по действующему трубопроводу, включающем основной цикл сжатия газа путем эжекционного захвата последнего струей рабочей жидкости из нагнетательного трубопровода, их смешение с образованием единого потока, компремирование газа в рабочей камере струйного аппарата и разделение газожидкостной смеси в сепараторе с возвратом рабочей жидкости в приемный трубопровод для жидкости и дополнительный цикл сжатия газа до давления, достаточного для вытеснения газа в нагнетательный трубопровод для газа, согласно изобретению, дополнительный цикл сжатия газа осуществляют после полного замещения в сепараторе жидкости газом в конце основного цикла посредством подачи в сепаратор одновременно с газожидкостной смесью из струйного аппарата дополнительного количества жидкости из нагнетательного трубопровода для рабочей жидкости.

А также тем, что в устройстве перекачки газа по действующему трубопроводу, включающем струйный аппарат с рабочей и приемной камерой и с соплом, подключенный к выходу рабочей камеры сепаратор, выход по газу которого подсоединен к нагнетательному трубопроводу для газа с установленным на нем обратным клапаном, приемный трубопровод для рабочей жидкости с установленным на нем силовым насосом, подключенным через нагнетательный трубопровод к полости сопла струйного аппарата, к приемной камере которого подсоединен приемный трубопровод для газа с установленным на нем обратным клапаном, и двухпозиционный золотниковый клапан с регулятором привода, согласно изобретению, двухпозиционный клапан установлен на выходе сепаратора по жидкости и в одном из рабочих положений подключает его через регулятор расхода к приемному трубопроводу для жидкости, а в другом - сообщает через другой регулятор расхода с нагнетательным трубопроводом для рабочей жидкости.

В предпочтительных случаях воплощения устройства: оно снабжено датчиками содержания газа и жидкости, установленными на выходе сепаратора по газу и жидкости, подключенными к регулятору привода двухпозиционного золотникового клапана; сопло снабжено выходным диффузором.

Сущность изобретения поясняется чертежом, на котором изображена схема устройства для перекачки газа.

Устройство содержит струйный аппарат с рабочей 1 и приемной 2 камерами и соплом 3, приемный трубопровод 4 для газа, оснащенный обратным клапаном 5 и подсоединенный к приемной камере 2, нагнетательный трубопровод 6 для газа с установленным на нем обратным клапаном 7 и сепаратор 8, оснащенный датчиками содержания газа и жидкости 9, 10, соединенными через регулятор 11 с приводом 12 управляемого двухпозиционного клапана 13, силовой насос 14 с приемным 15 и нагнетательным 16 трубопроводами для рабочей жидкости.

У сепаратора 8 выход по жидкости через двухпозиционный клапан 13 в одном из его рабочих положений сообщается каналом 17 с приемным трубопроводом 15 для рабочей жидкости, а в другом из положений - каналом 18 с нагнетательным трубопроводом 16 для рабочей жидкости.

В струйном аппарате сопло 3 для формирования струи рабочей жидкости имеет дополнительный выходной диффузорный расширяющийся участок 19.

Каждый из каналов 17, 18, соединяющих приемный 15 и нагнетательный 16 трубопроводы для рабочей жидкости с двухпозиционным клапаном 13, оснащен регуляторами расхода 20, 21 соответственно в виде переменных гидравлических сопротивлений. Рабочая жидкость подается к силовому насосу 14 из емкости 22.

Рабочий процесс, реализуемый в устройстве по предлагаемому способу, состоит из двух последовательных циклов сжатия газа.

Первый цикл. Силовым насосом 14 рабочая жидкость подается по трубопроводу 16 в сопло 3 струйного аппарата. Через открытый клапан 5 по приемному трубопроводу 4 газ поступает в приемную камеру 2. В рабочей камере 1 осуществляется эжекционный захват газа струей рабочей жидкости с образованием единого потока. Присутствие газа в приемной камере 2 обеспечивает течение жидкости через диффузорный участок 19 без контакта жидкости со стенками диффузорного участка. По длине рабочей камеры происходит нарастание давления, приводящего к сжатию газа. Газожидкостная смесь из рабочей камеры 1 отводится в сепаратор 8, где происходит отделение газа от жидкости. Газ накапливается в сепараторе 8, рабочая жидкость вытесняется из сепаратора 8 через двухпозиционный клапан 13 в приемный трубопровод 15 силового насоса 14. Регулятор расхода 20 на канале 17 позволяет задать и поддерживать давление в сепараторе 8, соответствующее оптимальному режиму работы струйного аппарата. Клапан 7 на первом цикле сжатия газ закрыт, поскольку давление в сепараторе 8 меньше давления в нагнетательном трубопроводе 6.

Второй цикл дополнительного сжатия начинается, когда жидкость полностью вытеснена из сепаратора 8 и датчик 10 зафиксировал момент замещения жидкости газом (например, по изменению электропроводности среды). Сигнал от датчика 10 преобразуется регулятором 11 в управляющий сигнал, подаваемый на привод 12 двухпозиционного клапана 13. Клапан 13 переходит во второе рабочее положение, перекрывая канал 17 и сообщая канал 18 с сепаратором 8. Рабочая жидкость начинает поступать в сепаратор и через канал 18, на котором установлен регулятор расхода 21, позволяющий уменьшить амплитуду изменения давления на выходе силового насоса 14 в момент переключения клапана 13. Из-за поступления жидкости в сепаратор 8 в нем начинает увеличиваться давление. В приемной камере 2 давление увеличивается, клапан 5 закрывается, приемная камера 2 заполняется жидкостью. Поскольку диффузорный участок 19 заполнен однородной средой, режим течения жидкости через него меняется (в отличие от первого цикла, когда приемная камера была заполнена газом, а струя жидкости не касалась стенок диффузорного участка). В данном случае в диффузорном участке реализуется безотрывное течение жидкости, кинетическая энергия потока преобразуется в потенциальную.

В момент, когда давление в сепараторе 8 выравняется с давлением в нагнетательном трубопроводе 6, открывается клапан 7 и газ из сепаратора 8 начинает вытесняться в нагнетательный трубопровод 6. Когда весь газ будет вытеснен из сепаратора 8, срабатывает датчик 9 (например, по изменению электропроводности среды). Сигнал от датчика 9 преобразуется регулятором 11 в управляющий сигнал, подаваемый на привод 12 двухпозиционного клапана 13. Клапан 13 переходит в первое рабочее положение, перекрывая канал 18 и сообщая канал низкого давления 17 с сепаратором 8. В сепараторе 8 при этом снижается давление, давление также снижается в приемной камере 2 струйного аппарата. Клапан 5 открывается и приемная камера 2 заполняется газом. Струя рабочей жидкости отрывается от стенок диффузорного участка 19. Струйный аппарат начинает перекачку газа. Газ заполняет сепаратор 8, вытесняя жидкость. Описанные циклы повторяются последовательно один за другим.

Таким образом, устройство позволяет реализовать схему двухступенчатого сжатия газа. Полный рабочий цикл разбит на два цикла. На протяжении первого цикла газ сжимается в жидкоструйном аппарате до давления, которое больше давления в приемном трубопроводе 4, но меньше давления в нагнетательном трубопроводе 6. На протяжении второго цикла газ сжимается до давления, достаточного для вытеснения газа в нагнетательный трубопровод. На втором цикле используется процесс более эффективного - объемного вытеснения газа жидкостью, что позволяет снизить затраты энергии на сжатие и перекачку газа в целом.

Кроме того, на протяжении цикла дополнительного сжатия газа обеспечивается снижение гидравлических потерь давления при течении рабочей жидкости через сопло, что достигается за счет снижения скорости потока рабочей жидкости и повышения давления в расширяющемся диффузорном выходном канале сопла. Безотрывное течение жидкости в диффузорной части сопла способствует преобразованию кинетической энергии в потенциальную, а пониженная скорость течения жидкости на выходе из диффузорной части сопла и соответственно на входе в камеру смешения обеспечивает снижение местного гидравлического сопротивления, обусловленного внезапным расширением потока.

Формула изобретения

1. Способ перекачки газа по действующему трубопроводу, включающий основной цикл сжатия газа путем эжекционного захвата последнего струей рабочей жидкости из нагнетательного трубопровода, их смешение с образованием единого потока, компремирование газа в рабочей камере струйного аппарата и разделение газожидкостной смеси в сепараторе с возвратом рабочей жидкости в приемный трубопровод для жидкости и дополнительный цикл сжатия газа до давления, достаточного для вытеснения газа в нагнетательный трубопровод для газа, отличающийся тем, что дополнительный цикл сжатия газа осуществляют после полного замещения в сепараторе жидкости газом в конце основного цикла посредством подачи в сепаратор одновременно с газожидкостной смесью из струйного аппарата дополнительного количества жидкости из нагнетательного трубопровода для рабочей жидкости.

2. Устройство для перекачки газа по действующему трубопроводу, включающее струйный аппарат с рабочей и приемной камерами и с соплом, подключенный к выходу рабочей камеры сепаратор, выход по газу которого подсоединен к нагнетательному трубопроводу для газа с установленным на нем обратным клапаном, приемный трубопровод для рабочей жидкости с установленным на нем силовым насосом, подключенным через нагнетательный трубопровод к полости сопла струйного аппарата, к приемной камере которого подсоединен приемный трубопровод для газа с установленным на нем обратным клапаном, и двухпозиционный золотниковый клапан с регулятором привода, отличающееся тем, что двухпозиционный клапан установлен на выходе сепаратора по жидкости и в одном из рабочих положений подключает его через регулятор расхода к приемному трубопроводу для жидкости, а в другом - сообщает через другой регулятор расхода с нагнетательным трубопроводом для рабочей жидкости.

3. Устройство по п.2, отличающееся тем, что оно снабжено датчиками содержания газа и жидкости, установленными на выходе сепаратора по газу и жидкости, подключенными к регулятору привода двухпозиционного золотникового клапана.

4. Устройство по п.2, отличающееся тем, что сопло снабжено выходным диффузором.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к газовой промышленности, в частности к способу транспортировки газообразных продуктов на длительные расстояния от источника к потребителю

Изобретение относится к нефтяной промышленности и может быть использовано для уничтожения донных отложений мазутохранилищ путем введения в топливо, подаваемое на сжигание

Изобретение относится к газовым сетям, а также к области холодильной техники и может быть использовано в системах охлаждения, где сжиженная смесь углеводородов (например, пропан-бутан) находится под давлением, служит одновременно топливом для автомобильного двигателя и холодильным агентом для холодильной установки с целью охлаждения теплоизолированного кузова авторефрижератора

Изобретение относится к газовым сетям, а также к холодильной технике и может быть использовано в системах комбинированного использования сжиженного (например, нефтяного, под давлением) углеводородного газа (пропана, пропан-бутановой смеси), который служит одновременно топливом для двигателя автомашины и хладагентом для холодильной установки, предназначенной для охлаждения изотермического кузова авторефрижератора, кабины водителя, отдельных отсеков автомашины, транспортных систем кондиционирования

Изобретение относится к энергосберегающим технологиям транспорта газа и может быть использовано при создании автоматизированной системы управления технологическим процессом магистрального газопровода

Изобретение относится к области строительства и касается восстановления пришедших в негодность подземных металлических газопроводов

Изобретение относится к трубопроводному транспорту, преимущественно агрессивных газов, и может быть использовано в газодобывающей и химической промышленности

Изобретение относится к области подготовки нефтяных газов первой ступени сепарации нефти к транспорту их до газоперерабатывающих заводов и других потребителей и может быть использовано в нефтедобывающей промышленности

Изобретение относится к струйной технике, преимущественно к способам работы насосно-эжекторных установок и установкам для его осуществления

Изобретение относится к области струйной техники, преимущественно к струйным конденсационным установкам, используемым в паровых турбинах

Изобретение относится к области струйной техники, преимущественно к использованию струйных аппаратов для деаэрации жидких сред, преимущественно питательной воды энергоустановок

Изобретение относится к области струйной техники, преимущественно к насосно-эжекторным установкам для откачки и сжатия различных газообразных сред

Изобретение относится к области струйной техники, преимущественно к установкам для создания вакуума и сжатия откачиваемой газообразной среды

Изобретение относится к области струйной техники, преимущественно к автономным установкам для получения сжатого газа, чаще всего сжатого воздуха

Изобретение относится к струйной технике, преимущественно к скважинным струйным установкам для обработки призабойной зоны пласта скважины гидроимпульсами рабочей среды

Изобретение относится к турбодетандерным установкам
Наверх