Следящий измеритель с адаптивным фильтром

 

Следящий измеритель с адаптивным фильтром предназначен для измерения параметров траекторий летательных аппаратов, таких как дальность - скорость, скорость - ускорение, угловая координата - скорость изменения угловой координаты. Он состоит из фильтра оценки измеряемой координаты и из блока адаптации, введение которого в существующий измеритель позволило адаптировать его к текущим ошибкам экстраполяции. Технический результат заключается в том, что позволяет повысить устойчивость функционирования измерителя, точность оценки сопровождаемых координат на 10-40% и уменьшить время переходных процессов в 1,2-1,5 раза, при этом не потребовав от вычислителя ни повышения быстродействия, ни увеличения объема его памяти. 1 ил.

Изобретение относится к радиотехнике и может использоваться в радиотехнических системах измерения параметров траекторий летательных аппаратов (дальность - скорость, скорость - ускорение, угловая координата - скорость изменения угловой координаты).

Известны: следящий измеритель дальности, содержащий --фильтр (Кузьмин С. З. Основы проектирования систем цифровой обработки радиолокационной информации. - М.: Радио и связь, 1986, стр. 166, прототип); следящий измеритель, содержащий шесть фильтров Калмана (авторское свидетельство СССР N 1061082, кл. G 01 S 13/66, 1983); линейное адаптивное устройство обработки данных, содержащее 12 фильтров Калмана (авторское свидетельство РФ N 2052835, кл. G 01 S 13/02, 1996).

Недостатками этих следящих измерителей являются либо низкая точность фильтрации данных вследствие расходимости оценок вектора состояния при нелинейном законе изменения отслеживаемых фазовых координат (прототип), либо высокие требования к вычислительной системе по объему памяти и быстродействию.

Из известных технических решений наиболее близким (прототипом) является следящий измеритель дальности, содержащий --фильтр, содержащий вычитающее устройство, на первый выход которого подается измеряемая величина, а выход соединен с первым и вторым усилителями, первый сумматор, выход которого соединен с первым блоком задержки, выход которого соединен с первым входом второго сумматора, третий усилитель, вход которого соединен с выходом второго усилителя, а выход с первым входом третьего сумматора, второй блок задержки, вход которого соединен с выходом третьего сумматора, а выход с четвертым усилителем и вторым входом третьего сумматора, выход четвертого усилителя соединен с вторым входом второго сумматора, выход которого соединен с вторым входом первого сумматора и вторым входом вычитающего устройства.

Известное устройство проводит обработку данных в соответствии с алгоритмом Xи(k) = X(k)+и(k). (5) где X - текущее значение отслеживаемой координаты; Xэ - экстраполированное на следующий шаг обработки значение отслеживаемой координаты; Xи - измеренное значение отслеживаемой координаты; X0 - начальное значение отслеживаемой координаты, текущее, экстраполированное и начальное значения скорости изменения отслеживаемой координаты соответственно; оценки отслеживаемой координаты и скорости ее измерения соответственно; ид - шум измерений с математическим ожиданием равным нулю и известной дисперсией; k - шаг дискретизации; T - интервал обработки; и - постоянные коэффициенты усиления.

Недостатком прототипа является низкая точность сопровождения фильтруемых параметров вследствие постоянства коэффициентов и , выбор которых производится с учетом противоречивых требований к точности и устойчивости сопровождения цели: увеличение значений и приводит к повышению точности оценивания координат при снижении запаса устойчивости, кроме этого, при появлении в законе изменения сопровождаемой координаты второй и более высоких производных возникают нарастающие во времени динамические ошибки сопровождения, что неизбежно приведет к его срыву.

Таким образом, задачей изобретения является повышение точности и устойчивости работы следующего измерителя с --фильтром в условиях неопределенности закона изменения сопровождаемой координаты и интенсивностей шумов системы.

Поставленная задача достигается тем, что в следующий измеритель с --фильтром, содержащим вычитающее устроство, на первый вход которого подается измеряемая величина, а выход соединен с первым и вторым усилителями, первый сумматор, выход которого соединен с первым блоком задержки, выход которого соединен с первым входом второго сумматора, третий усилитель, выход которого соединен с первым входом третьего сумматора, второй блок задержки, вход которого соединен с выходом третьего сумматора, а выход с четвертым усилителем и вторым входом третьего сумматора, выход четвертого усилителя соединен с вторым входом второго сумматора, выход которого соединен с вторым входом первого сумматора и вторым входом вычитающего устройства, дополнительно ведены первый и второй коммутаторы между первым усилителем и первым сумматором и вторым усилителем и третьим усилителем соответственно, а именно первые входы коммутаторов соединены с выходами первого и второго усилителей, вторые входы соединены с выходами введенных второго и третьего перемножителей, выход первого коммутатора соединен с первым входом первого сумматора, а выход второго коммутатора - с входом третьего усилителя, управляющие входы коммутаторов соединены с выходом порогового устройства, вход которого соединен с выходом вычитающего устройства, первые входы второго и третьего перемножителей соединены с выходом вычитающего устройства, второй вход второго перемножителя соединен с выходом вычислителя, второй вход третьего перемножителя соединен с выходом пятого усилителя, вход которого соединен с выходом вычислителя, вход которого соединен с выходом первого перемножителя, оба входа которого соединены с выходом вычитающего устройства.

На чертеже представлена структурная электрическая схема следящего измерителя с адаптивным --фильтром, где 1 - вычитающее устройство, 2 - первый усилитель, 3 - первый коммутатор, 4 - первый сумматор, 5 - первый блок задержки, 6 - второй сумматор, 7 - первый перемножитель, 8 - пороговое устройство, 9 - четвертый усилитель, 10 - второй перемножитель, 11 - вычислитель, 12 - второй усилитель, 13 - второй коммутатор, 14 - третий усилитель, 15 - третий сумматор, 16 - второй блок задержки, 17 - пятый усилитель, 18 - третий перемножитель.

Функционально следящий измеритель состоит из фильтра оценки измеряемой координаты, в состав которого входят последовательно соединенные вычитающее устройство 1, первый усилитель 2, первый коммутатор 3, первый сумматор 4, первый блок задержки 5 и второй сумматор 6, из фильтра оценки скорости изменения измеряемой координаты, в состав которого входят последовательно соединенные второй усилитель 12, второй коммутатор 13, третий усилитель 14, третий сумматор 15, второй блок задержки 16 и четвертый усилитель 9, и из блока адаптации к текущим ошибкам экстраполяции, в состав которого входят первый перемножитель 7, пороговое устройство 8, второй перемножитель 10, вычислитель 11, пятый усилитель и третий перемножитель 18.

Алгоритм работы следящего измерителя с адаптивным --фильтром описывается следующими уравнениями: где Dи - дисперсия ошибок измерителя - вычисляется в соответствии с правилом Dи = -(1+)X20 (14) - постоянный коэффициент усиления, X0 - допустимая величина ошибки сопровождения.

Рассмотрим, как происходит формирование этого алгоритма. За один такт T до начала работы адаптивного --фильтра по результатам предварительных измерений в каналы оценки отслеживаемой координаты и скорости ее изменения через первый 4 и третий 15 сумматоры соответственно вводятся начальные значения отслеживаемой координаты X0 и скорости ее изменения которые в виде через время T формируются на выходах блоков задержки 5 и 16. Усиленное в T раз значение складывается во втором сумматоре 6 с в результате чего формируется экстраполированное значение отслеживаемой координаты Xэ(k) (10), которое подается на второй вход вычитающего устройства 1. При поступлении измеренного значения отслеживаемой координаты Xи (11) на выходе вычитающего устройства 1 формируется невязка измерений X(k) (9), которая поступает на первый 2 и второй 12 усилители, первый 7, второй 10 и третий 18 перемножители и на пороговое устройство 8. Если величина невязки X(k) (9) не превышает допустимой величины ошибки сопровождения X0 (6), то с выхода порогового устройства 8 сигналы на коммутаторы 3 и 13 не поступают и на входы первого сумматора 4 и третьего усилителя 14 подаются соответственно усиленные в первом усилителе 2 в раз, а во втором усилителе 12 в раз значения невязки X(k). На выходе первого сумматора 4 в соответствии с (7) формируется оценка отслеживаемой координаты В канале оценки скорости изменения отслеживаемой координаты на выходе третьего сумматора 15 в соответствии с (8) формируется оценка скорости изменения отслеживаемой координаты Полученные оценки далее используются потребителями и при формировании экстраполированного значения отслеживаемой координаты Xэ(k) (10) на следующий такт измерений по вышеописанному алгоритму.

Если величина невязки X(k) (9) превышает допустимую величину ошибки сопровождения X0 (6), то с выхода порогового устройства 8 на коммутаторы 3 и 13 поступают коммутирующие сигналы, в результате чего на входы первого сумматора 4 и третьего усилителя 14 подаются соответственно значения невязки X(k), усиленные во втором перемножителе 10 в к раз и в третьем перемножителе 18 в к раз. Величина к формируется в результате возведения в квадрат невязки X(k) в первом перемножителе 7 и вычислении его в вычислителе 11 в соответствии с формулой (12). Величина к формируется на выходе пятого усилителя 17 в результате усиления сигнала к в / раз (формула (13)). В результате такой коммутации коррекция прогнозируемых значений Xэ в канале отслеживаемой координаты и в канале оценки скорости ее изменения будет более интенсивная, адаптируемая к текущим ошибкам прогноза.

Для выполнения заявленного устройства может быть использована элементная база, выпускаемая в настоящее время отечественной промышленностью.

Использование изобретения по сравнению с прототипом за счет адаптации коэффициентов усиления невязки к текущим ошибкам экстраполяции отслеживаемого процесса позволит, как показало моделирование его алгоритмов, повысить устойчивость функционирования следящих измерителей, точность оценки сопровождаемой координаты на 10-40% и уменьшить время переходных процессов при больших ошибках первичных измерений в 1,2 - 1,5 раза.

Кроме того, предложенный алгоритм практически не требует ни повышения быстродействия вычислителя, реализующего его вычисление, ни увеличения объема его памяти.

Формула изобретения

Следящий измеритель с адаптивным фильтром, содержащий вычитающее устройство, на первый вход которого подается измеряемая величина, а выход соединен с первым и вторым усилителями, первый сумматор, выход которого соединен с первым блоком задержки, выход которого соединен с первым входом второго сумматора, третий усилитель, выход которого соединен с первым входом третьего сумматора, второй блок задержки, вход которого соединен с выходом третьего сумматора, а выход - с четвертым усилителем и вторым входом третьего сумматора, выход четвертого усилителя - с вторым входом второго сумматора, выход которого соединен с вторым входом первого сумматора и вторым входом вычитающего устройства, отличающийся тем, что в него введены первый и второй коммутаторы между первым усилителем и первым сумматором и вторым усилителем и третьим усилителем соответственно, а именно первые входы соответственно первого и второго коммутаторов соединены с выходами первого и второго усилителей, вторые входы - с выходами введенных второго и третьего перемножителей, выход первого коммутатора - с первым входом первого сумматора, а выход второго коммутатора - с входом третьего усилителя, управляющие входы коммутаторов соединены с выходом порогового устройства, вход которого соединен с выходом вычитающего устройства, первые входы второго и третьего перемножителей - с выходом вычитающего устройства, второй вход второго перемножителя - с выходом вычислителя, второй вход третьего перемножителя - с выходом пятого усилителя, вход которого соединен с выходом вычислителя, вход которого соединен с выходом первого перемножителя, оба входа которого соединены с выходом вычитающего устройства.

РИСУНКИ

Рисунок 1

NF4A Восстановление действия патента СССР или патента Российской Федерации на изобретение

Дата, с которой действие патента восстановлено: 27.02.2010

Извещение опубликовано: 27.02.2010        БИ: 06/2010



 

Похожие патенты:

Изобретение относится к радиолокации и может быть использовано в радиолокационных головках самонаведения (РГС) управляемых ракет для повышения их помехозащищенности за счет распознавания сигнала помехи типа "антипод" и исключения его захвата на автосопровождение по доплеровской частоте

Изобретение относится к радиолокационной технике и может быть использовано в качестве системы слежения за целью по углу места при работе бортовой радиолокационной станции в режиме обзора (сопровождение цели "на проходе")

Изобретение относится к радиотехнике , в частности в технике обработки радиолокационных сигналов, и может быть использовано для формирования графических изображений совместно с первичным радиолокационным изображением в береговых радиолокационных системах (РЛС)

Изобретение относится к радиотехнике

Изобретение относится к радиотехнике и может использоваться в радиотехнических системах измерения параметров траекторий летательных аппаратов (дальность-скорость, скорость-ускорение, угловая координата-скорость изменения угловой координаты)

Изобретение относится к радиотехническим системам, в частности к радиолокационным системам измерения дальности, и может быть использовано в бортовых РЛС

Изобретение относится к радиолокационным измерения и может быть использовано в радиолокации для определения угловых координат объектов наблюдения в условиях воздействия на антенну - фразированную антенную решетку - дестабилизирующих факторов

Изобретение относится к радиотехнике и может использоваться в радиотехнических системах измерения параметров траекторий летательных аппаратов (дальность-скорость, скорость-ускорение, угловая координата-скорость изменения угловой координаты)

Изобретение относится к радиотехническим системам, в частности к радиолокационным системам измерения координат, и может быть использовано в бортовых и наземных РЛС

Изобретение относится к радиотехнике, в частности может использоваться в бортовых импульсно-доплеровских радиотехнических системах (РТС) летательных аппаратов для оценивания дальности до лоцируемых объектов, а также скорости и ускорения сближения с ними, скорости и ускорения лоцируемых объектов, собственной скорости и собственного ускорения летательного аппарата

Изобретение относится к области систем наблюдения и сопровождения за объектами в пространстве преимущественно с подвижного основания

Изобретение относится к имитаторам сигнала, передаваемого с радиолокационной станции на контроллер радиолокационной станции

Изобретение относится к области радиотехники и может быть использовано для измерения координат и параметров движения нескольких целей, в том числе целей из состава групповой
Наверх