Способ изготовления деталей из псевдосплава бронза-сталь

 

Изобретение относится к порошковой металлургии и может быть использовано для изготовления антифрикционных износостойких деталей машиностроительного назначения. Способ заключается в том, что для приготовления шихты берут медь с размером частиц 30 - 100 мкм, порошок железа, имеющий частицы размером 60 - 200 мкм преимущественно округлой формы, и дополнительно вводят олово с размером частиц 5 - 100 мкм при следующем соотношении компонентов, мас. %: олово 2 - 5, графит 0 -2, железо 30 - 60, медь остальное, проводят прессование, спекание и калибровку дважды, после чего осуществляют маслопропитку. Способ позволяет упростить технологию изготовления деталей и повысить их качество. 1 з.п.ф-лы, 1 табл.

Предлагаемое изобретение относится к порошковой металлургии и может быть использовано для изготовления антифрикционных износостойких деталей машиностроительного назначения.

Известны способы получения антифрикционных деталей на основе меди, включающих приготовление шихты, прессование, спекание, калибровку, пропитку маслом [1].

Недостатком известных способов являются низкие технологические характеристики шихты, получаемой на основе стандартных порошков меди марок типа ПМС-1 и ПМС (ГОСТ 4960-75), из-за отсутствия текучести порошков меди указанных марок: насыпная плотность составляет 1,25-2,0 г/см3, текучесть порошков меди других марок составляет не менее 36 с.

Наиболее близким по технической сущности к заявляемому является способ изготовления деталей из порошкового материала, включающий приготовление шихты с содержанием меди 80%, элемента группы железа 5% и графита 15% с размером частиц: меди 5-30 мкм, элемента группы железа 15-55 мкм и графита 5-100 мкм, первое прессование, первое спекание, второе прессование, второе спекание, калибровку и механическую обработку. Детали, полученные по такой технологии, имеют высокие антифрикционные свойства в условиях смазки и самосмазывания. Однако при автоматических режимах прессования низкая текучесть шихты и ее невысокая насыпная плотность затрудняют получение стабильных по размеру и плотности деталей [2].

Предлагаемый способ обеспечивает повышение технологических свойств шихты (текучести и насыпной плотности) без снижения служебных характеристик получаемых деталей антифрикционного назначения (стабильных размеров и плотности, прочности и износостойкости).

Заявляемый способ изготовления деталей из порошковой бронзы, включающий приготовление шихты из меди, элементов группы железа и графита с размером частиц 5-100 мкм, прессование, спекание и калибровку, отличается тем, что для приготовления шихты берут медь с размером частиц 30-100 мкм, порошок железа, имеющий частицы размером 60-200 мкм преимущественно округлой формы, и дополнительно вводят олово с размером частиц 5-100 мкм при следующем соотношении компонентов, мас.%: Олово - 2 - 5 Графит - 0 - 2 Железо - 30 - 60 Медь - Остальное Для обеспечения стабильности и плотности материала калибровку проводят дважды, после чего осуществляют маслопропитку.

Использования иных, чем у прототипа, концентраций легирующих добавок и новый гранулометрический состав шихты позволяет упростить технологию изготовления, исключив операции повторного прессования и спекания, и повысить качество деталей.

Способ может быть проиллюстрирован на следующем примере конкретного выполнения.

ПРИМЕР. Деталь "вкладыш сферический" изготавливали по следующей технологии: приготовление шихты состава, мас.%: железо 50; медь (марки ПМС-1) 4,4; олово (марки ПО-1) 5; графит -1 при следующем соотношении частиц: железо 60-200 мкм; медь 20-100 мкм; олово 5-10 мкм; графит 5-100 мкм: - окатывание шихты в мельнице в течение 4 ч; - прессование шихты при давлении 300 МПа; - спекание по режиму 780oC, 2 ч;
- 1-я и 2-я калибровки;
- пропитка маслом по режиму 120oC, 2 ч.

Текучесть полученной шихты, определенная по стандартной методике, составила не более 28 с. Насыпная плотность шихты возросла в 1,5 раза и составила не менее 2,2 г/см3.

Спекание прессовок при температуре 780oC способствовало образованию псевдосплава бронзо-графит-железо. Разрушающее усилие полученного вкладыша выше по сравнению с прототипом, при этом интенсивность изнашивания составила 0,15 мкм/км. Предел отклонения размеров детали не более чем 0,01 мм.

Технологические характеристики шихты псевдосплава, полученной при различном соотношении компонентов, представлены в таблице (см. в конце описания).

Из таблицы видно, что содержание железа в заявляемых пределах обеспечивает более высокие технологические характеристики шихты.

Превышение крупности частиц компонентов выше заявляемых пределов не приводит к улучшению текучести шихты, но понижает эксплуатационные свойства изделий, а при уменьшении размера частиц ниже заявляемых ухудшаются технологические характеристики шихты.

Повышение текучести и насыпной плотности шихты очень важно при автоматическом прессовании, поскольку стабилизирует величину засыпаемой шихты в рабочую полость матрицы и позволяет достичь размерной стабильности и заданной плотности изделий. Кроме того, повышается прочность и износостойкость материала.

Источники, принятые во внимание:
1. ГОСТ 26719-85.

2. Патент ФРГ N2027902, 1972 г.


Формула изобретения

1. Способ изготовления деталей из псевдосплава бронза-сталь, включающий приготовление шихты из меди, элементов группы железа и графита с размером частиц 5 - 100 мкм, прессование, спекание и калибровку, отличающийся тем, что для приготовления шихты берут медь с размером частиц 30 - 100 мкм, порошок железа, имеющий частицы размером 60 - 200 мкм преимущественно округлой формы и дополнительно вводят олово с размером частиц 5 - 100 мкм при следующем соотношении компонентов, мас.%:
Олово - 2 - 5
Графит - 0 - 2
Железо - 30 - 60
Медь - Остальное
2. Способ по п.1, отличающийся тем, что калибровку проводят дважды, после чего осуществляют маслопропитку.

РИСУНКИ

Рисунок 1



 

Похожие патенты:
Изобретение относится к технике производства тонких прутков и проволоки, обладающих эффектом памяти формы и сверхупругостью из сплавов системы никель-титан с памятью формы, имеющих широкую область применения, в том числе для выполнения пружин и рессор транспортных средств, а также другого оборудования и изделий

Изобретение относится к порошковой металлургии, в частности к получению крупногабаритных полуфабрикатов в виде прутка, шестигранника, квадрата, прямоугольной шины, трубы и других профилей из порошковых и дисперсно-упрочненных материалов на основе меди, или никеля, или алюминия, или других цветных металлов, или их сочетаний, предназначенных для изготовления деталей электротехнического назначения в машиностроении

Изобретение относится к порошковой металлургии, в частности к дисперсно-упрочненным композиционным материалам на основе меди, и может быть использовано в машиностроении, химической и электротехнической промышленности, например, для изготовления деталей сварочной техники
Изобретение относится к конструкционным слоистым изолирующим материалам, которые могут быть использованы как вибро-, звуко- и теплоизолирующие материалы в авиа-, судо-, ракето-, вагоно- и автомобилестроении, в строительстве, лифтостроении, при изготовлении вагонеток подвесных дорог, воздуховодов и промышленных вентиляторов, корпусов акустических систем, радиоприемников и телевизоров

Изобретение относится к металлургии и может быть использовано при получении монокристаллических изделий из жаропрочных сплавов заданной кристаллографической ориентации, например лопаток ГТД и ГТУ
Изобретение относится к изготовлению композиционных материалов и может быть использовано в металлургии, машиностроении, электротехнике и электронике

Изобретение относится к порошковой металлургии и может быть использовано для изготовления уплотнительных элементов, предназначенных для уплотнения фланцевых и штуцерно-торцевых разъемных узлов трубопроводов различного назначения

Изобретение относится к порошковой металлургии и может быть использовано для изготовления уплотнительных элементов, предназначенных для уплотнения фланцевых и штуцерно-торцевых разъемных узлов трубопроводов различного назначения
Изобретение относится к области порошковой металлургии, в частности к изготовлению алмазного породоразрушающего инструмента: алмазных коронок, долот, расширителей
Изобретение относится к получению сверхтвердых материалов и может найти применение при изготовлении абразивного инструмента

Изобретение относится к порошковой металлургии

Изобретение относится к производству алмазного и абразивного инструментов методами порошковой металлургии

Изобретение относится к сверхтвердым материалам, а более конкретно к алмазосодержащим композитам, и может найти применение при изготовлении абразивного инструмента

Изобретение относится к получению тугоплавких композиционных изделий заданной формы, практически беспористых, и может быть использовано в области создания композиционных материалов повышенной размеростабильности, эрозионно стойких электротехнических материалов для работы на воздухе и т.п

Изобретение относится к порошковой металлургии, в частности к способам получения спеченных составных сложнопрофильных порошковых изделий, и может быть использовано для изготовления рабочих органов погружных насосов

Изобретение относится к порошковой металлургии, в частности к способам получения спеченных составных сложнопрофильных порошковых изделий, и может быть использовано для изготовления рабочих органов погружных насосов

Изобретение относится к порошковой металлургии (ПМ) и может быть использовано для изготовления конструкционных и износостойких деталей машиностроительной, добывающей, приборостроительной, перерабатывающей и других отраслей промышленности в тех случаях когда требуется создание сложнопрофильного изделия из относительно простых частей

Изобретение относится к порошковой металлургии, в частности к изготовлению изделий с высокими механическими свойствами и повышенной износостойкостью
Наверх