Способ определения концентрации ферромагнитных частиц в жидкости и магнитной восприимчивости в диапазоне свч

 

Изобретение относится к способам измерения концентрации дисперсных систем и может быть использовано для контроля и регулирования концентрации ферромагнитных частиц в жидкости в процессе производства изделий из ферромагнитных материалов, например ферритов и магнитодиэлектриков, в химической и других областях промышленности. Сущность изобретения заключается в том, что в способе измерения концентрации ферромагнитных частиц в жидкости, включающем помещение сосуда с жидкостью в высокочастотное электромагнитное и постоянное магнитное поля и последующую регистрацию изменения параметров, характеризующих высокочастотное излучение, падающее высокочастотное излучение линейно поляризуют, направление вектора напряженности постоянного магнитного поля совмещают с направлением распространения излучения в жидкости, измеряют длину пути излучения в жидкости. При стабилизации оптимальной величины угла поворота плоскости поляризации при помощи постоянного магнитного поля, создаваемого соленоидом подмагничивания, по току подмагничивания определяют концентрацию ферромагнитных частиц. Напряженность постоянного магнитного поля увеличивают до граничной величины Ног - момента изменения поляризации выходной волны от линейной к вращающейся, определяют магнитную восприимчивость ферромагнитных частиц и в последующих измерениях концентрации ферромагнитных частиц вносят коррекцию на изменение магнитной восприимчивости. Технический результат - повышение точности измерения концентрации. 1 ил.

Изобретение относится к способам измерения концентрации дисперсных систем и может быть использовано для контроля и регулирования концентрации ферромагнитных частиц в жидкости в процессе производства изделий из ферромагнитных материалов, например ферритов и магнитодиэлектриков, в химической и других областях промышленности.

Известен способ измерения концентрации ферромагнитных частиц в жидкости, использующий эффект Фарадея, /см. Абраров А.Т., Дмитриев Д.А., Соколов Ю.Ф. "Способ измерения концентрации ферромагнитных частиц". А.с. N 924557, кл. G 01 N 15/00. БИ N 16 от 30.04.82 г./. Измерение концентраций ферромагнитных частиц проводится по измерению угла поворота плоскости поляризации электромагнитной волны, прошедшей путь длиной l через фиксированный объем жидкости с ферромагнетиком, намагниченным постоянным магнитным полем вдоль распространения электромагнитной волны. Мерой концентрации ферромагнитных частиц является угол поворота плоскости поляризации.

Недостатком способа являются малая точность и технологические трудности измерения угла поляризации в функции измеряемой объемной концентрации и невозможность измерения магнитной восприимчивости, характеризующей химический состав ферромагнитных частиц.

Ближайшим к предлагаемому является принятый за прототип способ измерения концентрации ферромагнитных частиц в жидкости, реализованный совместно с вышеописанным в устройстве для измерения концентрации ферромагнитных частиц в жидкости /см. Дмитриев Д. А. , Суслин М.А., Степаненко И.Т., Федюнин П.А. "Устройство для измерения концентрации ферромагнитных частиц в жидкости". Патент РФ N 2090860 от 20.09.98 г./. Измерение концентрации ферромагнитных частиц в жидкости производится по измерению тока подмагничивания соленоида, расположенного на отрезке круглого волновода, создающего постоянное магнитное поле для стабилизации оптимальной величины угла поворота плоскости линейно поляризованной электромагнитной волны, прошедшей через размещенную в круглом волноводе диэлектрическую камеру с исследуемой жидкостью с продольно намагниченными ферромагнитными частицами.

Недостатком вышеописанных способов и устройства являются невозможность определения химического состава ферромагнитных частиц в жидкости и погрешность измерения концентрации из-за изменения магнитной восприимчивости, зависящей от химического состава ферромагнитных частиц.

Техническим результатом изобретения является повышение точности измерения концентрации и определение химического состава ферромагнитных частиц.

Сущность изобретения заключается в том, что в способе измерения концентрации ферромагнитных частиц в жидкости, включающем помещение сосуда с жидкостью в высокочастотное электромагнитное и постоянное магнитное поля и последующую регистрацию изменения параметров, характеризующих высокочастотное излучение, падающее высокочастотное излучение линейно поляризуют, направление вектора напряженности постоянного магнитного поля совмещают с направлением распространения излучения в жидкости, измеряют длину пути излучения в жидкости, при стабилизации оптимальной величины угла поворота плоскости поляризации при помощи постоянного магнитного поля, создаваемого соленоидом подмагничивания, по току подмагничивания определяют концентрацию ферромагнитных частиц, напряженность постоянного магнитного поля увеличивают до граничной величины Hог - момента изменения поляризации выходной волны от линейной к вращающейся, определяют магнитную восприимчивость ферромагнитных частиц и в последующих измерениях концентрации ферромагнитных частиц вносят коррекцию на изменение магнитной восприимчивости.

При распространении линейно поляризованной электромагнитной волны сквозь жидкость с ферромагнитными частицами, намагниченными постоянным магнитным полем H0 вдоль направления распространения электромагнитной волны, согласно чертежу при H0 в зоне A наблюдается явление поворота плоскости поляризации (эффект Фарадея) электромагнитной волны. Величина угла поворота плоскости поляризации зависит от концентрации ферромагнитных частиц в жидкости, длины пути излучения в жидкости, поля подмагничивания (тока подмагничивания) и магнитной восприимчивости: = [+(Ho,C,),]l, где - коэффициент распространения электромагнитной волны, зависящий от величин и ; + - относительная магнитная проницаемость ферромагнитных частиц для право поляризованной волны; - относительная диэлектрическая проницаемость ферромагнитных частиц; H0 - напряженность постоянного магнитного поля; C - относительная концентрация ферромагнитных частиц в жидкости; l - длина пути электромагнитной волны в жидкости с ферромагнитными частицами.

Величина является постоянной величиной и зависит от величины H0, т.е. от величины тока подмагничивания I. Тогда при фиксированной длине l угол поворота зависит от измеряемой величины тока соленоида, магнитной восприимчивости и величины C: = Ф(I,,C). При стабилизации оптимальной величины ток подмагничивания есть мера концентрации ферромагнитных частиц в жидкости и их магнитной восприимчивости:
I = Ф(C, ).

С учетом того, что в зоне A (см. чертеж) 1, тогда угол поворота плоскости поляризации будет зависеть от величины относительной магнитной проницаемости для право поляризованной волны. На основании /Тимошенко А.Н., Пономаренко В. И. Обобщенная формула для расчета электромагнитных констант среды со сферическими включениями. Радиотехника и электроника. - 1996 г., т. 41, N 4, с. 412-415/ и /Рабкин А.И. Высокочастотные ферромагнетики. -М.: ФМГИ, 1960 г. / относительная магнитная проницаемость смеси ферромагнитных частиц и жидкости-носителя имеет вид

где н = kr Mн - частота магнитного насыщения;
Mн = H0рез - намагниченность насыщения;
- магнитная восприимчивость;
= krH0рез - частота ферромагнитного резонанса;
o = krH0 - частота свободной прецессии вектора магнитного момента в постоянном магнитном поле, зависящая от величины H0:
kr = 2,21105 м/Ас - гиромагнитное отношение;
H0 = k1Iподм - величина поля подмагничивания как функция параметров соленоида и тока подмагничивания;
k1 - коэффициент пропорциональности, зависящий от геометрических размеров соленоида подмагничивания и числа витков W на единицу длины.

Следовательно, на основании вышеуказанного фиксированный оптимальный угол поворота плоскости поляризации при фиксированных длине l и относительной диэлектрической проницаемости смеси будет зависеть:
= Ф(,C).
Для того, чтобы уменьшить погрешность измерений концентрация из-за нестабильности магнитной восприимчивости ферромагнитных частиц, необходимо вносить поправку на нестабильность магнитной восприимчивости.

При увеличении величины H0 до значения H0=Hог (граничное) (см. чертеж) произойдет процесс изменения поляризации выходной волны от линейной к круговой, т. к. при Hог- +см = 0 и право поляризованная волна вытесняется из объема ферромагнитной жидкости, быстро ослабляясь или поглощаясь в поверхностном слое. Через ферромагнитную жидкость проходит волна с -см с вращающейся поляризацией. Момент перехода поляризации индицируется, определяется Ir, который является мерой магнитной восприимчивости. Величина +см становится равной нулю:

(независимо от величины C) при значении
H0рез = H0рез -H0(I)

Величина граничного тока (при o(H11) = const:

прямо пропорциональна величине не зависящей от концентрации и определяемой только химическим составом (видом) ферромагнитных частиц.

Таким образом, величина Ir, при котором пропадает эффект Фарадея и проявляется эффект "смещения" поля, является мерой величины (вида ферромагнитных частиц), что позволяет реализовать способ определения сорта ферромагнитных частиц независимо от их концентраций и вносить поправку в результат измерений концентрации ферромагнитных частиц на нестабильность магнитной восприимчивости .

Технико-экономический эффект от использования предлагаемого изобретения заключается в повышении качества и улучшении технологичности производства жидкостей с ферромагнитными частицами и ферромагнитных изделий за счет повышения точности измерения концентрации.


Формула изобретения

Способ измерения концентрации ферромагнитных частиц в жидкости, включающий помещение сосуда с жидкостью в высокочастотное электромагнитное и постоянное магнитное поля и последующую регистрацию изменения параметров, характеризующих высокочастотное излучение, падающее высокочастотное излучение линейно поляризуют, направление вектора напряженности постоянного магнитного поля совмещают с направлением распространения излучения в жидкости, измеряют длину пути излучения в жидкости, при стабилизации оптимальной величины угла поворота плоскости поляризации при помощи постоянного магнитного поля, создаваемого соленоидом подмагничивания, по току подмагничивания определяют концентрацию ферромагнитных частиц, отличающийся тем, что напряженность постоянного магнитного поля увеличивают до граничной величины Ног - момента изменения поляризации выходной волны от линейной к вращающейся и определяют магнитную восприимчивость ферромагнитных частиц и в последующих измерениях концентрации ферромагнитных частиц вносят коррекцию на изменение магнитной восприимчивости.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к области контроля свойств материалов с помощью методов магнитных измерений

Изобретение относится к измерительной технике и предназначено для использования в технологических процессах добычи и переработки железных руд на горнообогатительных комбинатах

Изобретение относится к способам определения концентрации дисперсных систем и может быть использовано для контроля и регулирования концентрации ферромагнитных частиц (ФМЧ) в жидкости в химической и других отраслях промышленности, в частности, при контроле горюче-смазочных материалов на содержание металлических феррочастиц

Изобретение относится к способам контроля напряженно-деформированного состояния ферромагнетиков по остаточной намагниченности металла и может быть использовано в различных отраслях промышленности

Изобретение относится к области контрольно-измерительной техники в машиностроении и черной металлургии и может быть использовано при неразрушающем контроле ферромагнитных изделий

Изобретение относится к измерительной технике и может быть использовано для определения концентрации смесей различных веществ

Изобретение относится к способам определения концентрации дисперсных систем и может быть использовано для контроля и регулирования концентрации ферромагнитных частиц (ФМЧ) в жидкости в химической и других отраслях промышленности, в частности, при контроле горюче-смазочных материалов на содержание металлических феррочастиц

Изобретение относится к области анализа материалов путем определения их физических свойств с помощью радиотехнических средств и может найти широкое применение для анализа жидких топлив, в частности для определения их октанового (цетанового) числа при аттестации и сертификации готовой продукции, а также для контроля параметров промежуточных жидких фракций нефтепродуктов непосредственно в технологическом процессе производства топлив

Изобретение относится к способу, а также к устройству для непрерывного измерения влажности сыпучего продукта, например, компонентов пищевых продуктов или фуража, в измерительном канале с чувствительным элементом для микроволн

Изобретение относится к области создания материалов с заданными (программируемыми) свойствами с помощью технических средств, переносящих данные свойства на основе электромагнитных методов, что может найти применение в биологии, химии, медицине и др

Изобретение относится к методам и технике неразрушающего контроля, например с помощью сверхвысоких частот, при одностороннем доступе к контролируемому объекту, и может найти применение для обнаружения в стенах и перекрытиях строительных сооружений инородных металлических или диэлектрических предметов искусственного и естественного происхождения, в том числе расположенных за металлической арматурой или закрепленных непосредственно на арматуре, или расположенных между прутками арматуры со стороны, противоположной направлению облучения электромагнитным сигналом, и, в частности, в стенах строительных сооружений, выполненных по технологии цельнозаливных железобетонных конструкций, а также скрытых дефектов в виде пустот и трещин, металлической арматуры, санитарно-технических коммуникаций, кабельных магистралей, электрических и телефонных проводок

Изобретение относится к методам и технике неразрушающего контроля, например с помощью сверхвысоких частот, и предназначено для контроля дефектов в стенах и перекрытиях строительных сооружений, в частности армированных, при одностороннем доступе и может найти применение для обнаружения инородных металлических или диэлектрических предметов искусственного или естественного происхождения, расположенных за металлической арматурой, или закрепленных непосредственно на арматуре, или расположенных между прутками арматуры, со стороны противоположной направлению облучения электромагнитным сигналом, и в частности, в стенах строительных сооружений, выполненных по технологии цельнозаливных железобетонных конструкций

Изобретение относится к методам и технике неразрушающего контроля, например с помощью сверхвысоких частот, и предназначен для обнаружения дефектов в стенах и перекрытиях строительных сооружений при одностороннем доступе и может найти применение для обнаружения инородных металлических или диэлектрических предметов искусственного или естественного происхождения, в том числе расположенных за металлической арматурой, или закрепленных непосредственно на арматуре, или расположенных между прутками арматуры, со стороны противоположной направлению облучения электромагнитным сигналом, и в частности, в стенах строительных сооружений, выполненных по технологии цельнозаливных железобетонных конструкций
Изобретение относится к технической физике, а конкретнее - к способам повышения интенсивности запаха, в частности запаха наркотика или взрывчатки, для того, чтобы их легче было обнаруживать с помощью специально натренированных собак, а также в парфюмерной промышленности

Изобретение относится к области аналитической химии и может найти применение для определения содержания примеси в различных специальных жидкостях, таких как масло, топливо и гидравлические жидкости, в различных отраслях промышленности, где эти жидкости применяются
Наверх