Микрореактор для химического и генетического тестирования

 

Изобретение относится к прикладной физике и химии и может быть использовано в конструкции интегрированной микрочиповой системы для тестирования. Предложен микрореактор, содержащий кремниевый микрочип, проточную реакционную камеру, микрофлюидную систему с подложкой, электронагреватель и термодатчик, подключенные к программному регулятору с образованием системы автоматического регулирования температуры в реакционной камере. Основание и боковые стенки реакционной камеры выполнены в подложке микрофлюидной системы, другое основание реакционной камеры выполнено в виде фторопластового защитного слоя, с помощью которого реакционная камера герметично прикреплена к микрочипу через изолирующий слой. При этом на микрочипе со стороны, противоположной изолирующему слою, образован полый игольчатый радиатор соосно с реакционной камерой, в подложке выполнены капилляры, проходящие сквозь реакционную камеру для подачи и отвода реакционной смеси, а электронагреватель и термодатчик расположены во фторопластовом защитном слое по периметру основания реакционной камеры. При этом микрочип и полый игольчатый радиатор могут быть выполнены в виде одной детали с помощью избирательного травления кремниевой пластины, а подложка микрофлюидной системы может быть выполнена из полиметилметакрилата. В результате повышается отвод тепла, снижается инерционность, повышается точность результатов измерений. 2 з.п. ф-лы, 2 ил.

Изобретение относится к прикладной физике и химии и может быть использовано в конструкции интегрированной микрочиповой системы для химического и генетического тестирования. Наиболее эффективно его использовать в аппаратуре, предназначенной для проведения полимеразной цепной реакции (ПЦР), анализа микропроб органических загрязнений окружающей среды, при проведении судебно-медицинских экспертиз и т.п.

Известно устройство для химического и генетического тестирования, содержащее термостат со штативом для микропипеток из прозрачного материала, заполненных реакционной смесью. Боковые стенки термостата выполнены с возможностью прилегания к микропипеткам и снабжены линзами по месту расположения анализируемых проб для их оптического контроля. Термостат снабжен системой программного регулирования температуры с управляющим воздействием с помощью электронагревателя (US 5241363, G 01 N 21/01, 21/31, 1993).

Такая конструкция является громоздкой, в том числе в отношении объема реакционной смеси, что не только не позволяет тестировать пробы объемом менее 1 мкл, но и создает инерцию, затрудняющую точное регулирование температуры по заданной программе. Кроме того, масляное покрытие существенно затрудняет возможность микросенсорного контроля анализируемой пробы.

Известна также конструкция устройства для химического и генетического тестирования, представляющего собой микрореактор, содержащий кремниевый микрочип, на рабочей стороне которого вытравлена открытая микрокамера для помещения реакционной смеси объемом 1,5 мкл, удерживаемой в микрокамере с помощью кремниевого масла, заливаемого над уровнем пробы. По всей поверхности дна камеры выполнен термодатчик, а за пределами по периметру дна камеры сформирован электронагреватель, подключенные к системе программного регулирования температуры (J. H. Daniel, S.Iqbal, R.B.Milington. Silicon Microchambers for DNA amplification// Sensors and Actuators, A 71, 1998, p. 81-88).

Данная конструкция не обеспечивает проточного режима тестирования, при этом анализируемая проба является большой.

Наиболее близким к заявляемому является микрореактор, для химического и генетического тестирования, содержащий кремниевый микрочип, в котором образованы проточные реакционная и детекционная камеры, микрофлюидную систему с подложкой, электронагреватель и термодатчик, подключенные к программному регулятору с образованием системы автоматического регулирования температуры в реакционной камере (WO 9850154, PCT/US 98/09337, B 01 L 3/00, B 01 L 7/00, G 01 N 27/00, 1998).

Однако, известный микрореактор обладает неравномерностью и низкой точностью воспроизведения программного режима регулирования температуры в реакционной камере, что особенно нежелательно при генетическом тестировании, поскольку типовой температурный режим данного вида тестирования предусматривает быстрый нагрев пробы до 90oC и охлаждение до 50oC.

Технической задачей предлагаемого изобретения является повышение точности и равномерности регулирования температуры в термокамере микрореактора.

Решение указанной технической задачи состоит в том, что в конструкцию микрореактора для химического и генетического тестирования, содержащую кремниевый микрочип, проточную реакционную камеру, микрофлюидную систему с подложкой, электронагреватель и термодатчик, подключенные к программному регулятору с образованием системы автоматического регулирования температуры в реакционной камере, вносятся следующие изменения: 1) основание и боковые стенки реакционной камеры выполнены в подложке микрофлюидной системы; 2) другое основание реакционной камеры выполнено в виде фторопластового защитного слоя, с помощью которого реакционная камера герметично прикреплена к микрочипу через изолирующий слой; 3) на микрочипе со стороны, противоположной изолирующему слою, образован полый игольчатый радиатор соосно с реакционной камерой; 4) в подложке выполнены капилляры, проходящие сквозь реакционную камеру для подачи и отвода реакционной смеси; 5) электронагреватель и термодатчик расположены во фторопластовом защитном слое по периметру основания реакционной камеры.

Причинно-следственная связь внесенных изменений с решением поставленной технической задачи заключается в том, что отвод тепла с помощью радиатора повышает скорость теплообмена. Это имеет следствием снижение инерционности, а потому и повышение точности воспроизведения программного режима терморегулирования. Полая форма радиатора и расположение электронагревателя по периметру основания реакционной камеры обеспечивают равномерное распределение в ней температуры как при нагреве, так и при охлаждении. Расположение термодатчика по периметру основания реакционной камеры обеспечивает упреждающее измерение отклонения температуры от заданной программой, в том числе под действием помехи. Эта идея подтверждена результатами физического и математического моделирования.

При технической реализации предлагаемой конструкции кремниевый микрочип и полый игольчатый радиатор технологично выполнить в виде одной детали с помощью избирательного травления кремниевой пластины. При этом достигается также достаточно высокая теплопроводность радиатора.

Электронагреватель может быть выполнен из никеля. Однако, наиболее надежным является выполнение электронагревателя и резистивного термодатчика из карбида кремния, в том числе в варианте одновременного использования SiC-нагревателя в качестве термодатчика. Для электрической изоляции электронагревателя и термодатчика технологично нанести на соответствующую сторону микрочипа изолирующий слой нитрида кремния.

Подложка микрофлюидной системы может быть выполнена из полиметилметакрилата.

На фиг. 1 изображена схема расположения элементов микрореактора; на фиг. 2 - блок-схема системы программного регулирования температуры в реакционной камере.

Микрореактор для химического и генетического тестирования (фиг. 1) содержит кремниевый микрочип 1, сторона которого, используемая для прикрепления к ней реакционной камеры, защищена изолирующим слоем 2 из нитрида алюминия. Реакционная камера 3 размером 1,5x1,5x0,1 мм с электронагревателем 4 и термодатчиком 5, расположенными по периметру ее основания во фторопластовом защитном слое 6, выполнена с помощью микрофрезерования таким образом, что ее основание и боковые стенки расположены в полиметилметакрилатовой подложке 7 микрофлюидной системы. При этом реакционная камера 3 с помощью защитного слоя 6, служащего одним из ее оснований, герметично прикреплена к стороне микрочипа 1, покрытой изолирующим слоем 2. В подложке 7 выполнены капилляры 8 и 9, проходящие сквозь реакционную камеру 3 для подачи и отвода реакционной смеси. На микрочипе 1 со стороны, противоположной изолирующему слою 2, образован полый игольчатый радиатор 10 соосно с реакционной камерой 3. Элементы 1 и 10 выполнены в виде одной детали с помощью избирательного травления кремниевой пластины. Внутри реакционной камеры 3 расположен оптический микросенсор 12 для контроля за ходом реакции. Возможно использование других типов микросенсоров (например, микросенсора pH), а также установка их на выходной магистрали реакционной камеры 3.

Электронагреватель 4 и термодатчик 5 подключены к программному регулятору 13 (фиг. 2) с образованием системы автоматического регулирования температуры в реакционной камере 3.

При работе с микрореактором реакционную смесь вносят в камеру 3 и/или прокачивают ее в циклическом режиме. При этом осуществляют повторяющиеся циклы программного изменения температуры в реакционной камере с детектированием контролируемого микросенсором 12 изменения физико-химического параметра.

По результатам испытания, проведенного на модели предлагаемого микрореактора, установлено, что точность программного регулирования температуры в реакционной камере при пропорционально-интегральном алгоритме управления составляет в установившемся режиме 0,4oC по всему объему реакционной камеры 3, а время регулирования - от 0,5 до 1,0 с. Внесенные изменения в конструкцию позволяют реализовывать режим нагрева и охлаждения со скоростью от 50 до 150oC/с, что превосходит вышеуказанные технические характеристики известного устройства.

Формула изобретения

1. Микрореактор для химического и генетического тестирования, содержащий кремниевый микрочип, проточную реакционную камеру, микрофлюидную систему с подложкой, электронагреватель и термодатчик, подключенные к программному регулятору с образованием системы автоматического регулирования температуры в реакционной камере, отличающийся тем, что основание и боковые стенки реакционной камеры выполнены в подложке микрофлюидной системы, другое основание реакционной камеры выполнено в виде фторопластового защитного слоя, с помощью которого реакционная камера герметично прикреплена к микрочипу через изолирующий слой, при этом на микрочипе со стороны, противоположной изолирующему слою, образован полый игольчатый радиатор соосно с реакционной камерой, в подложке выполнены капилляры, проходящие сквозь реакционную камеру для подачи и отвода реакционной смеси, а электронагреватель и термодатчик расположены во фторопластовом защитном слое по периметру основания реакционной камеры.

2. Микрореактор по п. 1, отличающийся тем, что кремниевый микрочип и полый игольчатый радиатор выполнены в виде одной детали с помощью избирательного травления кремниевой пластины.

3. Микрореактор по п.1 или 2, отличающийся тем, что подложка микрофлюидной системы выполнена из полиметилметакрилата.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к измерительной технике, предназначено для измерения содержания воды в водонефтяной, преимущественно в высокообводненной, эмульсии

Изобретение относится к датчикам контроля химического состава технологических воздушных газовых сред и может быть использовано для селективной регистрации аммиака

Изобретение относится к области неразрушающего контроля изделий электромагнитным методом

Датчик // 2170424

Изобретение относится к способам измерения концентрации дисперсных систем и может быть использовано для контроля и регулирования концентрации ферромагнитных частиц в жидкости в процессе производства изделий из ферромагнитных материалов, например ферритов и магнитодиэлектриков, в химической и других областях промышленности

Изобретение относится к области микроэлектронике и может быть использовано в первичных преобразователях концентрации газов в электрические сигналы

Изобретение относится к аналитической химии, в частности к ионометрическим методам анализа, и предназначено для определения летучих компонентов в газовой фазе

Изобретение относится к области измерительной техники и может быть использовано в различных отраслях экономики для контроля влажности различных материалов

Изобретение относится к области аналитического приборостроения и может быть использовано при изготовлении датчиков концентрации аммиака, применяемых в системах экологического мониторинга

Изобретение относится к испытательной технике и неразрушающему контролю и может быть использовано при испытаниях и эксплуатации энергоемких энергетических установок, например компрессорных и турбинных агрегатов

Изобретение относится к испытательной технике и неразрушающему контролю и может быть использовано при испытаниях и эксплуатации энергоемких энергетических установок, например компрессорных и турбинных агрегатов

Изобретение относится к неразрушающему контролю изделий магнитным методом

Изобретение относится к магнитной дефектоскопии материалов и изделий

Изобретение относится к измерительной технике и может быть использовано при изготовлении датчиков аммиака в автоматизированных системах контроля газового состава технологических сред

Изобретение относится к измерительной технике и может быть использовано при изготовлении датчиков гидридов азота и их производных в автоматизированных системах контроля газового состава технологических сред

Изобретение относится к неразрушающему контролю нефтегазопроводов и может быть использовано для определения наличия отверстий и каверн внутри труб и их координат

Изобретение относится к полупроводниковой сенсорной технике и может быть использовано для изготовления недорогих и простых в изготовлении датчиков для определения концентрации аммиака в газовой среде
Наверх