Трехфазный генератор плазмы переменного тока

 

Изобретение относится к электротехнике, предназначено для получения низкотемпературной плазмы и может быть использовано в физических экспериментах, плазмохимии, металлургии, а также установках по утилизации токсичных и бытовых отходов. В трехфазном генераторе плазмы переменного тока, включающем электродный блок, в корпусе которого закреплены начальные части трех электродов и плазменный инжектор, и сопловой блок, соединенный с электродным блоком таким образом, что их полости образуют единую электроразрядную камеру, на выходе соплового блока установлено сопло для выхода плазмы, а на входе в электродный блок смонтировано кольцо для подачи плазмообразующего газа. Рабочие части электродов введены в полость соплового блока, при этом в электродном блоке установлено, по меньшей мере, по одному дополнительному кольцу для подачи плазмообразующего газа. Отношение диаметра D рабочей части электрода к диаметру d его начальной части составляет 3D/d1,1. Технический результат - значительное увеличение зоны взаимодействия электрической дуги, возникающей между электродами, и плазмообразующего газа и повышение тем самым коэффициента полезного действия устройства. 1 з.п. ф-лы, 2 ил.

Изобретение относится к электротехнике, предназначено для получения низкотемпературной плазмы и может быть использовано в физических экспериментах, плазмохимии, металлургии, а также установках по утилизации токсичных и бытовых отходов.

Известен трехфазный генератор плазмы переменного тока, US 4013867. Он содержит корпус, газовую камеру, множество дуговых нагревателей на корпусе и сопло. Однако множество дуговых нагревателей усложняет конструкцию и снижает ее надежность.

Известен также трехфазный генератор плазмы переменного тока, US 5801489, включающий электродный блок, в корпусе которого размещены как начальные, так и рабочие части электродов, а также плазменный инжектор, в частности плазмотрон, который позволяет осуществить ионизацию пространства между электродами; с электродным блоком соединен сопловой блок таким образом, что полости образуют общее пространство - электроразрядную камеру; на выходе соплового блока имеется сопло, через которое выходит генерируемая плазма; на входе в электродный блок имеется кольцо для подачи плазмообразующего газа в электроразрядную камеру.

Данное техническое решение принято за прототип настоящего изобретения.

Недостатком этого устройства является малая зона, в которой осуществляется взаимодействие электрической дуги, возникающей между электродами, и плазмообразующего газа. Это обусловливает низкий коэффициент полезного действия устройства (не выше 60%). Полость сопловой камеры используется только для локализации электрической дуги и не используется для обеспечения взаимодействия электрической дуги с плазмообразующим газом.

В основу настоящего изобретения положено решение задачи значительного увеличения зоны взаимодействия электрической дуги, возникающей между электродами, и плазмообразующего газа и повышение тем самым коэффициента полезного действия устройства.

Согласно изобретению эта задача решается за счет того, что в трехфазном генераторе плазмы переменного тока, включающем электродный блок, в корпусе которого закреплены начальные части трех электродов и плазменный инжектор, и сопловой блок, соединенный с электродным блоком таким образом, что их полости образуют единую электроразрядную камеру, при этом на выходе соплового блока установлено сопло для выхода плазмы, а на входе в электродный блок смонтировано кольцо для подачи плазмообразующего газа, рабочие части электродов введены в полость соплового блока, при этом в электродном блоке установлено, по меньшей мере, по одному дополнительному кольцу для подачи плазмообразующего газа; отношение диаметра D рабочий части электрода к диаметру d его начальной части составляет 3D/d1,1.

Заявителем не выявлены источники, содержащие информацию о технических решениях, идентичных настоящему изобретению, что позволяет сделать вывод о его соответствии критерию "новизна".

Реализация отличительных признаков изобретения обеспечивает (в совокупности с признаками, указанными в ограничительной части формулы изобретения) важное принципиально новое свойство объекта: в процесс взаимодействия электрической дуги и плазмообразующего газа вовлекается полость сопловой камеры, которая ранее использовалась только для локализации электрической дуги; таким образом, в несколько раз увеличивается зона этого взаимодействия, коэффициент полезного действия устройства возрастает, по меньшей мере, до 80%, то есть не менее чем на 20% в сравнении с прототипом.

Заявителем не обнаружены какие-либо источники информации, содержащие сведения о влиянии заявленных отличительных признаков на достигаемый вследствие их реализации технический результат. Это, по мнению заявителя, свидетельствует о соответствии данного технического решения критерию "изобретательский уровень".

Сущность изобретения поясняется чертежами, где изображено: на фиг.1 - устройство в разрезе по продольной оси; на фиг.2 - электрод в разрезе.

Трехфазный генератор плазмы переменного тока включает электродный блок 1. В его корпусе закреплены начальные части 2 трех электродов, жестко соединенные (спаянные в единое целое) с подводящими штуцерами 3. В начальной части 2 и рабочей части 4 электрода имеется канал 5 для подачи охлаждающей жидкости, которая из канала 5 проходит в канал 6 с отводящим штуцером 7. В корпусе электродного блока 1 укреплен плазменный инжектор 8. Электродный блок 1 соединен посредством фланцевого соединения с сопловым блоком 9, при этом полости электродного блока 1 и соплового блока 9 образуют электроразрядную камеру 10, представляющую собой единое пространство, ограниченное стенками корпусов указанных блоков. На выходе из соплового блока 9 установлено сопло 11. На входе в электродный блок 1 установлено кольцо 12 для подачи плазмообразующего газа, в конкретном примере воздуха. Кроме того, в электродном блоке 1 установлено такое же дополнительное кольцо 13, а в сопловом блоке 9 установлены два дополнительных кольца 14 и 15 для подачи плазмообразующего газа. Рабочие части 4 электродов введены в полость соплового блока 9; отношение диаметра D рабочей части 4 электрода к диаметру d его начальной части 2 в конкретном примере составляет 2, это позволяет увеличить ресурс работы электрода.

Устройство работает следующим образом.

Струя ионизированного газа, в частности воздуха, подается в электроразрядную камеру 10 и вызывает электрический пробой промежутка между электродами, к которым приложено напряжение 480 В. Электрическая дуга возникает в месте, где электроды наиболее близко находятся друг к другу. Рельсотропный эффект заставляет электрическую дугу двигаться вдоль электродов в сторону сопла, что увеличивает ее длину. Через кольца 12, 13, 14, 15 в камеру 10 поступает плазмообразующий газ (воздух), который нагревается от электрической дуги и переходит в состояние плазмы. Плазма движется вдоль продольной оси устройства и выходит через сопло 11. Как только напряжение на дуге достигает величины пробоя межэлектродного промежутка в самом узком месте, происходит повторный пробой, а первая дуга гаснет, цикл повторяется. Благодаря тому, что рабочие части электродов введены в полость соплового блока и наличию дополнительных колец 13, 14, 15 для подачи плазмообразующего газа, значительно увеличивается зона, в которой происходит взаимодействие электрической дуги и газа, что существенно повышает коэффициент полезного действия устройства.

Для реализации данного устройства использовано обычное для этой области техники промышленное оборудование, что обусловливает соответствие изобретения критерию "промышленная применимость".

Формула изобретения

1. Трехфазный генератор плазмы переменного тока, включающий электродный блок, в корпусе которого закреплены начальные части трех электродов и плазменный инжектор, и сопловой блок, соединенный с электродным блоком таким образом, что их полости образуют единую электроразрядную камеру, при этом на выходе соплового блока установлено сопло для выхода плазмы, а на входе в электродный блок смонтировано кольцо для подачи плазмообразующего газа, отличающийся тем, что рабочие части электродов введены в полость соплового блока, при этом в электродном блоке и в сопловом блоке установлено, по меньшей мере, по одному дополнительному кольцу для подачи плазмообразующего газа.

2. Трехфазный генератор по п.1, отличающийся тем, что отношение диаметра D рабочей части электрода к диаметру d его начальной части составляет 3D/d1,1.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к микроволновым СВЧ-плазменным реакторам с увеличенным объемом плазмы и может быть использовано при производстве изделий электронной техники и др

Изобретение относится к технологии плазменной обработки материалов и изделий, в частности к электродуговым плазматронам, предназначенным для напыления порошковых материалов, включая тугоплавкие материалы, на поверхности изделий с целью получения покрытий различного функционального назначения

Изобретение относится к физике высокотемпературной плазмы и направлено на создание стационарной высокотемпературной плотной полностью ионизированной плазмы

Изобретение относится к способам беспроволочной передачи электрической энергии и может быть использовано в качестве средства передачи электрических зарядов без проводов

Изобретение относится к технике электрических газовых разрядов, создаваемых в виде канала плазмы, сжатого магнитным полем собственного электрического тока, и применяемых в рентгеновской микролитографии, нейтронографии, в исследованиях биологических микрообъектов и в других областях науки и техники

Изобретение относится к технике электрических газовых разрядов, создаваемых в виде канала плазмы, сжатого магнитным полем собственного электрического тока, и применяемых в рентгеновской микролитографии, нейтронографии, в исследованиях биологических микрообъектов и в других областях науки и техники

Изобретение относится к устройствам для генерации плазмоидов, близких по своим свойствам к шаровым молниям и имеющих возможность автономного существования в свободном пространстве

Изобретение относится к конструкции электродуговых плазмотронов с межэлектродными вставками (МЭВ), предназначенных для нанесения покрытий или плазменной закалки в труднодоступных местах, например для нанесения защитных покрытий на внутренние поверхности труб, диаметр которых в свету соизмерим с дистанциями, принятыми для напыления (100-300 мм)

Изобретение относится к технике высокотемпературной плазмы и может быть использовано при разработке мощных источников рентгеновского излучения

Изобретение относится к технике получения низкотемпературной плазмы в больших вакуумных объемах

Изобретение относится к технике высокотемпературной плазмы и может быть использовано при разработке мощных источников рентгеновского излучения

Изобретение относится к электротехнике, предназначено для получения низкотемпературной плазмы и может быть использовано в физических экспериментах, плазмохимии, металлургии, а также установках по утилизации токсичных и бытовых отходов

Изобретение относится к электротехнике, предназначено для получения низкотемпературной плазмы и может быть использовано в физических экспериментах, плазмохимии, металлургии, а также установках по утилизации токсичных и бытовых отходов

Изобретение относится к электротехнике и направлено на увеличение срока службы ВЧИ-плазмотронов и повышение их теплового КПД

Изобретение относится к газоразрядной технике и может быть использовано для получения тлеющего разряда (ТР) для различных целей, например для возбуждения активных сред газовых лазеров, для спектроскопии газов и их смесей для химического анализа, для создания плазмохимических реакторов и установок плазменного травления микросхем и др

Изобретение относится к газоразрядной технике и может быть использовано для получения тлеющего разряда (ТР) для различных целей, например для возбуждения активных сред газовых лазеров, для спектроскопии газов и их смесей для химического анализа, для создания плазмохимических реакторов и установок плазменного травления микросхем и др

Изобретение относится к способам получения, исследования и применения низкотемпературной плазмы и может быть использовано в плазмохимии, плазменных технологиях обработки материалов и плазменной технике, в частности в плазмохимических реакторах

Изобретение относится к способам получения, исследования и применения низкотемпературной плазмы и может быть использовано в плазмохимии, плазменных технологиях обработки материалов и плазменной технике, в частности в плазмохимических реакторах
Наверх