Слоистый композиционный материал и изделие, выполненное из него

Изобретение относится к слоистому алюмополимерному материалу для изготовления или ремонта силовых элементов планера самолета: обшивок, перегородок, стрингеров фюзеляжа и крыла, панелей пола, а также для наземного транспорта. Предложен слоистый композиционный материал, состоящий из чередующихся алюминиевых листов и слоев стеклопластика с термореактивным связующим и армирующим наполнителем. Алюминиевые листы содержат, по крайней мере, два слоя, один - из высокомодульного Al-Li сплава с содержанием Li более 1,5%, а другой - из Al-Mg-Si сплава при соотношении толщин слоев (70-12):1. Слой из Al-Mg-Si сплава является наружным, имеет предел прочности не менее 260 МПа, предел текучести не менее 220 МПа, удлинение не менее 10% и стационарный электрохимический потенциал не менее чем на 20 мВ отрицательнее стационарного потенциала Al-Li сплава. Техническим результатом изобретения является повышение технологической пластичности и коррозионной стойкости. 2 н. и 2 з.п. ф-лы, 2 табл.

 

Изобретение относится к области слоистых гибридных алюмополимерных материалов, содержащих листы из алюминиевых сплавов и слои армированного полимерного композиционного материала и применяемых в качестве конструкционного листового материала для силовых элементов планера самолета (обшивок, перегородок, стрингеров фюзеляжа и крыла, панелей пола и др.) и их ремонта, а также для изделий наземного транспорта.

Известен класс слоистых композиционных алюмополимерных материалов на основе алюминиевых листов и прослоек стеклопластика. Материалы этого типа, предложенные фирмой «AKZO» (Нидерланды) и обозначенные маркой GLARE (GLass+Aluminium+REinforced), состоят из тонких листов сплавов традиционных систем легирования Al-Cu (2024 - типа Д16), Al-Zn (7075 - типа В95) и промежуточных слоев стеклопластика, которые содержат непрерывные стеклянные волокна с модулем упругости 80-100 ГПа и термопластичное или термореактивное связующее. Материалы рекомендуются прежде всего для использования в фюзеляже самолетов [Патент США №5039571].

На базе алюминиевых сплавов имеются российские слоистые алюмостеклопластики, обозначенные маркой СИАЛ (Стекло И АЛюминий) [J.N. Fridlyander, L.I. Anikhovskaya, O.G. Senatorova a.o. The Structure and Properties of СИАЛ (Glass/Epoxy - Aluminium) Laminates. Proc. of ICAA-6, Japan, 1998].

Основным недостатком этой серии слоистых алюмополимерных композиционных материалов, обусловленным свойствами слоев стеклопластика, является пониженный на 10-30% модуль упругости по сравнению с основными конструкционными алюминиевыми сплавами. Это снижает жесткость элементов и ограничивает их применение, особенно в крупногабаритных конструкциях, например, в обшивках широкофюзеляжных самолетов. Кроме того, композиты обладают несколько (до 8-10%) большей плотностью по сравнению с ранее разработанными слоистыми алюмоорганопластиками класса АЛОР (ARALL).

Наиболее близким по составу и назначению к предлагаемому изобретению является слоистый композиционный материал, состоящий из листов алюминиевого высокомодульного сплава пониженной плотности с содержанием лития более 1,5% и слоев стеклопластика на основе термореактивного связующего и армирующего наполнителя из высокопрочных, высокомодульных стеклянных волокон [Патент РФ №2185964].

Использование в составе слоистого материала тонких листов из Al-Li сплава, предпочтительно системы Al-Li-Cu-Mg, с высоким модулем упругости (не менее 77000 МПа) и пониженной плотностью (не более 2600 кг/м3) вместо листов из традиционных среднепрочных сплавов типа дуралюмин системы Al-Cu-Mg с модулем упругости 71500 МПа и плотностью 2770 кг/м3 позволяет повысить в целом модуль упругости при растяжении и сжатии слоистого алюмостеклопластика на ˜ 10% (до более 60000 МПа) и приблизить его к модулю алюминиевых сплавов, а также дополнительно понизить плотность, преимущественно до 2300-2400 кг/м3.

Кроме того, для обеспечения монолитности слоя стеклопластика и его надежной связи с алюминиевыми листами применяется модифицированное термореактивное связующее с повышенной температурой отверждения (до 180°С).

К недостаткам этого слоистого алюмостеклопластика относятся:

- композиционный материал на основе листов из алюминиево-литиевого сплава имеет недостаточную технологическую пластичность при процессах формообразования деталей, что не позволяет изготавливать детали с малыми радиусами гиба (Rmin), увеличенной вытяжкой (обтяжкой) и сужает область их применения;

- в структуре тонких монолитных листов из алюминиево-литиевых сплавов, входящих в состав композиционного материала, отсутствует надежная, электрохимическая поверхностная защита от коррозии, что, соответственно, снижает коррозионную стойкость композиционного материала и изделий, выполненных из него, особенно при эксплуатации в морской атмосфере.

Технической задачей настоящего изобретения является создание слоистого композиционного материала на основе листов из высокомодульного Al-Li сплава пониженной плотности и слоев стеклопластика, обладающего повышенными технологической пластичностью при формообразовании деталей и коррозионной стойкостью, при сохранении повышенного модуля упругости, пониженной плотности, высокой прочности и сопротивления усталостному разрушению и других эксплуатационных характеристик для конструкционного применения в основных силовых элементах планера самолетов и изделий других транспортных средств.

Для решения поставленной задачи предложен слоистый композиционный материал, состоящий из чередующихся алюминиевых листов и слоев стеклопластика с термореактивным связующим и армирующим наполнителем, отличающийся тем, что алюминиевые листы содержат, по крайней мере, два слоя, один из которых выполнен из высокомодульного Al-Li сплава пониженной плотности с содержанием Li более 1,5%, а другой - из сплава системы Al-Mg-Si при соотношении толщин слоев (70-12):1. При этом слой, выполненный из сплава системы Al-Mg-Si, является наружным по отношению к композиционному материалу и имеет предел прочности не менее 260 МПа, предел текучести не менее 220 МПа, удлинение не менее 10% и стационарный электрохимический потенциал не менее чем на 20 мВ отрицательнее стационарного потенциала Al-Li сплава. Предложено также изделие, выполненное из этого композиционного материала.

Использование в составе композиционного материала Al слоистых листов, где один слой выполнен из высокомодульного легкого Al-Li сплава, а другой из более пластичного алюминиевого сплава системы Al-Mg-Si, позволяет допускать большие степени деформации, избегать появление дефектов при изготовлении деталей и элементов, что расширяет их номенклатуру применения и упрощает технологический процесс их производства.

Важным преимуществом предлагаемых слоистых алюминиевых листов является их повышенная коррозионная стойкость как следствие высокой общей коррозионной стойкости наружных слоев из сплава системы Al-Mg-Si, который осуществляет и электрохимическую (анодную) защиту внутренних слоев из Al-Li сплава при повреждении (нарушении целостности) наружных слоев, а также по торцам листов. Все это способствует надежной коррозионной стойкости композиционного материала в целом.

Предложенная регламентация соотношения толщин слоев из сплавов на основе систем Al-Li и Al-Mg-Si в алюминиевых листах обеспечивает создание оптимального комплекса свойств композиционного алюмополимерного материала. При минимальном соотношении достигается наилучшая технологическая пластичность и коррозионная стойкость материала. При максимальном соотношении обеспечивается наибольший уровень прочности, упругости и минимальная плотность. Запредельные значения соотношений слоев (менее 12 и более 70) не обеспечивают требуемого сочетания свойств слоистого композиционного материала, особенно для изделий ответственного значения.

Кроме того, наружные слои из алюминиевого сплава системы Al-Mg-Si по отношению к композиционному материалу имеют преимущества по технологичности при нанесении адгезионной оксидной пленки в процессе анодного окисления при подготовке поверхности алюминиевых листов под склеивание (формование) композита, а также обеспечивают дополнительно высокое качество декоративных оксидных пленок на наружной поверхности композиционного материала.

Существенным фактором является совместимость сплавов внутреннего и наружного слоев в алюминиевых листах по температурно-временным параметрам упрочняющей термообработки. Эти параметры, в свою очередь, совместимы с повышенной температурой отверждения (до 180°С) используемого клеевого модифицированного связующего для создания надежной связи между металлическими листами и полимерными слоями и повышения температуры эксплуатации композиционного материала.

Примеры осуществления

В опытном производстве были отформованы трехслойные листы композиционного материала габаритами 650×650 мм, состоящие из двух тонких слоистых алюминиевых листов с различным соотношением внутреннего слоя из Al-Li сплава и наружного слоя из Al-Mg-Si сплава и одного слоя стеклопластика с однонаправленной схемой армирования высокопрочными, высокомодульными стеклянными волокнами, распределенными в связующем на основе модифицированных эпоксидных смол.

Характеристики структуры и свойств компонентов заявленного (примеры 1, 2, 3) и известного (пример 4) слоистых композиционных материалов на основе слоистых алюминиевых листов и слоев стеклопластика представлены в табл.1.

Алюминиевые слоистые листы толщиной 0,35 мм подвергали предварительно обезжириванию, травлению, анодному окислению в хромовой или фосфорной кислотах, далее они были покрыты адгезионным грунтом с помощью распылителя. Листы после подготовки поверхности помещали на плиту, и затем выполняли послойную укладку алюминиевых листов и монослоев препрегов в соответствии с требуемой ориентацией армирующих стеклянных волокон и направлением прокатки алюминиевых листов для создания необходимой структуры композиционного материала.

Формование листов композита проводили автоклавным способом (автоклав «Шольц» с рабочим пространством ⊘ 800×2000 мм), а также прессовым методом при различных повышенных температурах отверждения модифицированного связующего.

Микроструктура и регламентированные соотношения слоев в алюминиевых листах, структура и объемное содержание других компонентов в листах из полученных композиционных материалов контролировали на шлифах, вырезанных из разных зон, методами количественного микроструктурного анализа в оптических микроскопах.

Механические свойства исследовали на образцах, вырезанных из слоистых алюминиевых листов и слоистых композиционных материалов.

Механические свойства при растяжении (предел прочности σв, модуль упругости Е) определяли на образцах с шириной рабочей части 10-15 мм и в соответствии с ГОСТ 1497-84.

Трещиностойкость (скорость роста трещины усталости) изучали на образцах размерами 140×420 мм с исходным центральным отверстием ⊘ 4 мм и пропилом 2l0≈6 мм при следующих условиях усталостного нагружения: σmax=120 МПа; R=0; f=5 Гц.

Плотность композитов определяли методом гидростатического взвешивания.

Минимально допустимый радиус гибки Rmin на угол 90°, который является основным показателем, определяющим способность материала деформироваться изгибом при листовой штамповке, изучали на образцах размером 40×60 мм.

Исследование электрохимических свойств алюминиевых листов (стационарных потенциалов, анодных поляризационных кривых) проводили на импульсном потенциостате в 3%-ном растворе NaCl. Исследовались листовые образцы с наружным слоем из сплава системы Al-Mg-Si и после его стравливания, т.е. состоящие только из внутренних слоев Al-Li сплава.

В табл.2 показаны механические, физические, технологические и коррозионные свойства листов из заявленного (примеры 1, 2, 3) и известного (пример 4) композиционных материалов. Примеры 1, 2 - с двухслойными Al листами с одним наружным слоем из сплава Al-Mg-Si; пример 3 - с трехслойными Al листами с двумя наружными слоями из сплава Al-Mg-Si.

Как свидетельствуют полученные и представленные в табл.2 результаты, структура и состав предложенного слоистого алюмостеклопластика позволили повысить на 10-35% способность материала деформироваться при формообразовании, приблизив ее к показателям для композиционного материала на базе листов из сплавов системы Al-Cu-Mg. Они также обеспечили надежную электрохимическую (анодную) защиту алюминиевых листов от коррозии, т.к. потенциал их наружных слоев более отрицательный, чем внутренних. При этом сохраняется высокий уровень прочности, модуля упругости, сопротивления развитию усталостных трещин, при пониженной плотности композита.

Таким образом, предложенный более технологичный, коррозионно-стойкий, высокомодульный, легкий, высокопрочный, трещиностойкий слоистый композиционный материал расширяет возможности и технологичность производства деталей, обеспечивает повышение ресурса, надежности, весовой эффективности, температурного диапазона эксплуатации изделий. Материал рекомендуется для изготовления листов, плит, гнутых профилей.

Слоистый композиционный материал, состоящий из чередующихся слоистых листов алюминиевых сплавов и слоев стеклопластика, предназначен в качестве эффективного, практически реализуемого конструкционного материала для основных элементов планера самолета (обшивок, перегородок, стрингеров фюзеляжа и крыла, панелей пола) и их ремонта (как стопер трещин), а также для изделий наземного транспорта и других транспортных средств, взамен конструкционных монолитных алюминиевых сплавов.

Таблица 1

Характеристики компонентов алюмостеклопластиков
ХарактеристикаПримеры 1, 2, 3Пример 4
Алюминиевый лист
Слои из сплава Al-1,7% Li-Cu-Mg
Модуль упругости при

растяжении Е, МПа
8100081000
Плотность d, кг/м325802580
Предел прочности σв, МПа450450
Предел текучести σ0,2; МПа345345
Удлинение δ,%1010
Слои из сплава Al-Mg-Si
Модуль упругости Е, МПа72000-
Плотность d, кг/м32710-
Предел прочности σв, МПа310-
Предел текучести σ0,2, МПа260-
Удлинение δ,%17-
Стеклянные волокна
Диаметр, мм1010
Модуль упругости Е, МПа9000090000
Плотность d, кг/м325502550
Термореактивное связующее
Температура отверждения, °С172172

Таблица 2

Комплекс характеристик слоистых композиционных материалов, полученных по предлагаемому и известному способам
ПримерыСлои из Al-Li и Al-Mg-Si сплавов в Al листахПредел прочности, σв, МПаМодуль упругости, Е, ГПаПлотность, d, кг/м3Скорость роста трещин усталости dl/dN мкм/цикл (ΔК=31МПа√м)Минимальный радиус гиба

Rmin
Стационарный электронный потенциал, мВ
СоотношениеТолщина,

мкм
170:1350:58757323600,095,0S*-635
240:1360:98707223700,084,5S-660
31:24:1**14:336:148607123900,084,0S-675
4100:13508707323500,095,5S-590
* S - толщина композита

** отношение толщины внутреннего слоя из Al-Li сплава к толщине 2х наружных слоев из Al-Mg-Si сплава - 12:1

1. Слоистый композиционный материал, состоящий из чередующихся алюминиевых листов и слоев стеклопластика с термореактивным связующим и армирующим наполнителем, отличающийся тем, что алюминиевые листы содержат, по крайней мере, два слоя, один из которых выполнен из высокомодульного Al-Li сплава пониженной плотности с содержанием Li более 1,5%, а другой - из сплава системы Al-Mg-Si при соотношении толщин слоев (70-12):1.

2. Слоистый композиционный материал по п.1, отличающийся тем, что слой алюминиевого листа, выполненный из сплава системы Al-Mg-Si, является наружным по отношению к композиционному материалу.

3. Слоистый композиционный материал по п.1, отличающийся тем, что слой алюминиевого листа, выполненный из сплава системы Al-Mg-Si, имеет предел прочности не менее 260 МПа, предел текучести не менее 220 МПа, удлинение не менее 10%, стационарный электрохимический потенциал не менее чем на 20 мВ отрицательнее стационарного потенциала Al-Li сплава.

4. Изделие из слоистого композиционного материала, отличающееся тем, что оно выполнено из материала по любому из пп.1-3.



 

Похожие патенты:

Изобретение относится к получению слоистых гибридных алюмополимерных композиционных материалов, используемых для основных элементов планера самолета, в том числе для обшивок, полов и перегородок грузовых отсеков, также для различных изделий транспортного машиностроения.
Изобретение относится к обработке металлов давлением и может быть использовано для изготовления плоских биметаллических заготовок широкого размерного сортамента по толщине и соотношению толщин слоев.

Изобретение относится к области металлургии и может быть использовано во многих отраслях промышленности в авиа- и транспортном машиностроении, приборостроении, строительной индустрии и т.

Изобретение относится к слоистым гибридным алюмополимерным композиционным материалам конструкционного назначения, преимущественно для изготовления основных элементов планера самолета и их ремонта и для изделий транспортного машиностроения.

Изобретение относится к композиционным слоистым материалам конструкционного назначения и может найти применение в машиностроении, в авиакосмической технике, например для изготовления силовых деталей планера, и в других областях техники при изготовлении деталей, работающих на растяжение.

Изобретение относится к металлургии и может быть использовано в авиа- и транспортном машиностроении, приборостроении, в строительной индустрии. .

Изобретение относится к способу изготовления износостойкого слоистого материала износоустойчивыми пластинами пресса, применяемыми в создании износоустойчивого декоративного материала.
Изобретение относится к конструкционным слоистым изолирующим материалам, которые могут быть использованы как вибро-, звуко- и теплоизолирующие материалы в авиа-, судо-, ракето-, вагоно- и автомобилестроении, в строительстве, лифтостроении, при изготовлении вагонеток подвесных дорог, воздуховодов и промышленных вентиляторов, корпусов акустических систем, радиоприемников и телевизоров.

Изобретение относится к обработке металлов давлением, а именно к получению многослойных материалов в рулонах совместной пластической деформацией. .

Изобретение относится к изготовлению соединений при получении многослойных композиционных материалов, используемых, например, в панелях самолетов. .

Изобретение относится к долговечным покрытиям, в частности к материалам для прачечного и кухонного оборудования и принадлежностей. .

Изобретение относится к защите металлических труб малого диаметра, используемых в автомобилестроении, от коррозии. .
Изобретение относится к способу соединения поверхности металлических деталей с пластмассами. .

Изобретение относится к области машиностроения и может быть использовано при разработке и изготовлении корпусных конструкций, стойких к ударному нагружению. .

Изобретение относится к способам получения многослойных металлизированных гибких материалов и может быть использовано в производстве гибких печатных плат и гибких многослойных теплоизоляционных металлизированных материалов рулонного типа, обеспечивающих отражение инфракрасного излучения.

Изобретение относится к получению слоистых гибридных алюмополимерных композиционных материалов, используемых для основных элементов планера самолета, в том числе для обшивок, полов и перегородок грузовых отсеков, также для различных изделий транспортного машиностроения.

Изобретение относится к области производства антифрикционных материалов, которые могут быть изготовлены методом порошковой металлургии и использованы в различных отраслях промышленности.

Изобретение относится к изготовлению многослойных труб для трубопроводов, например нефте- и газопроводов, работающих при высоком внутреннем и внешнем давлении. .

Изобретение относится к получению многослойных материалов, в частности, прессовой компенсационной подушки. .
Изобретение относится к области получения биметаллических антифрикционных материалов, в частности к способам припекания порошковых систем, и может быть использовано в машиностроении для изготовления узлов трения и сепараторов подшипников качения
Наверх