Способ термомеханической обработки двухфазных титановых сплавов

Изобретение может быть использовано в машиностроении, авиадвигателестроении и медицине при изготовлении полуфабрикатов из двухфазных титановых сплавов путем термомеханической обработки, сопровождающейся изменением механических свойств материала. Предложен способ термомеханической обработки двухфазных титановых сплавов. Способ включает интенсивную пластическую деформацию заготовки в пересекающихся вертикальном и горизонтальном каналах при температуре 600°С с накопленной логарифмической степенью деформации не менее двух. После интенсивной пластической деформации в пересекающихся каналах осуществляют экструдирование заготовки в несколько проходов при температуре 300°С с коэффициентом вытяжки не менее 1,2. Технический результат - повышение прочностных характеристик двухфазных титановых сплавов (предела прочности, предела текучести, предела выносливости) при сохранении удовлетворительной пластичности. 1 табл.

 

Изобретение относится к термомеханической обработке с изменением механических свойств материала и может быть использовано в машиностроении, авиадвигателестроении и медицине при изготовлении полуфабрикатов из двухфазных титановых сплавов.

Известны способы обработки двухфазных титановых сплавов с целью повышения их прочностных характеристик.

Например, способ деформирования заготовок в пересекающихся горизонтальном и вертикальном каналах (см. В.М.Сегал, В.И.Копылов, В.И.Резников "Процессы пластического структурообразования металлов", Минск: Навука и тэхника, 1994, с.26) позволяет упрочнять металл за счет интенсивной сдвиговой деформации.

Известен способ обработки заготовок, включающий интенсивную пластическую деформацию заготовки в пересекающихся горизонтальном и вертикальном каналах с подпором в последнем, который осуществляется на начальной и окончательной стадиях процесса деформирования (патент РФ N 2139164, МПК В 21 J 5/00, опубл. 10.10.1999 г.).

Известен способ деформирования заготовок в пересекающихся вертикальном и горизонтальном каналах при температуре 600°С (Ко У.Г., Джанг B.C., Шин Д.Х., Ли С.С. Влияние температуры и исходной микроструктуры на равноканальное угловое прессование сплава Ti-6Al-4V. Скрипта материалиа, №48, 2003, с.197-202).

Известные способы не позволяют получать требуемые прочностные характеристики, включая показатели усталости.

Наиболее близким к предложенному является способ деформирования заготовок в пересекающихся вертикальном и горизонтальном каналах при температуре 600°С (Яписи Г.Г., Караман И., Луо З.П., Рек Г. Микроструктура и механические свойства порошкового сплава Ti-6Al-4V интенсивно деформированного с использованием равноканального углового прессования. Скрипта материалиа, №49, 2003, с.1021-1027).

Данный способ позволяет повысить уровень прочностных характеристик обрабатываемого материала, но недостаточен для использования в ответственных конструкциях.

Изобретение направлено на повышение прочностных характеристик двухфазных титановых сплавов при сохранении пластичности, в том числе в массивных заготовках.

Поставленная задача достигается способом получения ультрамелкозернистых заготовок, включающим интенсивную пластическую деформацию заготовки в пересекающихся вертикальном и горизонтальном каналах при температуре 600°С с накопленной логарифмической степенью деформации е≥2. В отличие от прототипа после интенсивной пластической деформации осуществляют экструдирование в несколько циклов при температуре 300°С с коэффициентом вытяжки не менее 1,2.

Экструдирование, используемое после интенсивной пластической деформации в пересекающихся вертикальном и горизонтальном каналах, позволяет создать схему деформации, близкую к условиям всестороннего сжатия, что и обеспечивает условия повышенной деформируемости таких труднодеформируемых материалов, как двухфазные титановые сплавы. Например, такие процессы как волочение или прокатка при тех же температурно-временных условиях и степенях деформации не могут обеспечить высокой деформируемости материалов в силу реализации менее благоприятных для ее повышения схем деформации. В связи с этим сочетание интенсивной пластической деформации в пересекающихся каналах и экструдирование в указанных режимах обеспечивает дополнительное измельчение структуры в заготовках, что приводит к повышению прочностных характеристик при сохранении пластичности.

Способ осуществляют следующим образом.

Заготовку из двухфазного титанового сплава в виде прутка подвергают интенсивной пластической деформации в пересекающихся каналах. Деформацию проводят при температуре 600°С в несколько последовательных проходов, между которыми пруток вращают вокруг продольной оси на 90°. Количество проходов определяется достижением накопленной логарифмической степени деформации е≥2.

После деформации в пересекающихся каналах заготовка подвергается правке, обработке на токарном станке для снятия дефектного слоя.

На следующем этапе заготовку подвергают экструдированию в несколько циклов с постепенным уменьшением диаметра и увеличением длины заготовки с набором коэффициента вытяжки 1, 2. Температура экструдирования 300°С была определена опытным путем и является температурой, при которой в заготовках формируется ультрамелкозернистая структура, обеспечивающая комплекс свойств: высокие прочностные характеристики при сохранении пластичности. После окончания данного этапа проводят контроль механических свойств на растяжение при комнатной температуре и контроль микроструктуры.

Пример конкретного выполнения

Брали пруток из сплава Ti-6A1-4V диаметром 40 мм и длиной 120 мм. Пруток подвергали пластической деформации по описанному выше способу. Угол пересечения каналов Ф=120°. Температура деформации 600°С. Число последовательных проходов n=4. После правки и обработки на токарном станке диаметр заготовки составлял 36 мм.

На следующем этапе пруток подвергали экструдированию при температуре 300°С. Количество циклов экструдирования составило 6, в результате чего диаметр заготовки уменьшился с 36 до 20 мм, а длина заготовки увеличилась со 120 до 300 мм. Контроль механических свойств сплава на растяжение при комнатной температуре показал значения, приведенные в таблице 1. Для сравнения в таблице 1 приведены механические свойства сплава перед термомеханической обработкой по предлагаемому способу, а также свойства после обработки по известному способу-прототипу.

Таблица 1
Механические свойства сплава Ti-6Al-4V в различных состояниях
Механические свойства сплаваСостояние сплава
До обработки по предлагаемому способуПосле обработки по способу - прототипуПосле обработки по предлагаемому способу
Предел прочности, МПа94012841350
Предел текучести, МПа84010421300
Относительное удлинение, %16711
Относительное сужение, %453537

Таким образом, предложенный способ термомеханической обработки двухфазных титановых сплавов позволяет существенно повысить прочностные характеристики обрабатываемого материала при сохранении удовлетворительной пластичности.

Способ термомеханической обработки двухфазных титановых сплавов, включающий интенсивную пластическую деформацию заготовки в пересекающихся вертикальном и горизонтальном каналах при температуре 600°С с накопленной логарифмической степенью деформации не менее двух, отличающийся тем, что после интенсивной пластической деформации в пересекающихся каналах осуществляют экструдирование заготовки в несколько проходов при температуре 300°С с коэффициентом вытяжки не менее 1,2.



 

Похожие патенты:

Изобретение относится к области металлургии, а именно к способам получения особотонкостенных труб из циркониевых сплавов и к устройствам, в частности к вакуумным установкам для их отжига.

Изобретение относится к обработке металлов, а именно к способу изготовления слоистых материалов. .

Изобретение относится к металлообработке, а именно к получению слоистого материала из сплава металлов, например Zr-Nb, в частности для изготовления оболочки кабеля для термопары.
Изобретение относится к области металлургии, а именно к деформационно-термической формообразующей обработке сплавов титан-никель с эффектом памяти формы, и может быть использовано в металлургии, машиностроении и медицине.

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении промежуточных заготовок из титановых сплавов методом горячего деформирования.
Изобретение относится к области диффузионной сварки трубчатых переходников из циркониевых и стальных втулок. .

Изобретение относится к бруску из + титанового сплава и способу его изготовления. .

Изобретение относится к области металлургии, а именно к способам ковки титановых сплавов и заготовкам, пригодным для ковки. .

Изобретение относится к области металлургии, а именно к термоакустической обработке изделий или заготовок из двухфазных титановых сплавов. .
Изобретение относится к области металлургии, а именно к получению полуфабрикатов из жаропрочных высоколегированных деформируемых сплавов на основе никеля, предназначенных преимущественно для изготовления дисков газотурбинных двигателей или других изделий, работающих в условиях предельных нагрузок при рабочих температурах выше 600°С.

Изобретение относится к обработке материалов давлением и может быть использовано при получении холодным пластическим деформированием деталей с заданным уровнем эксплуатационных характеристик.
Изобретение относится к области обработки металлов давлением, в частности к упрочнению металлов пластическим деформированием. .

Изобретение относится к обработке металлов давлением, в частности к способам получения калиброванных поковок с удлиненной осью из слитков и предварительно деформированных заготовок на прессах в четырехбойковых ковочных устройствах.

Изобретение относится к обработке материалов давлением и может быть использовано при получении холодным пластическим деформированием деталей с заданным уровнем эксплуатационных характеристик.

Изобретение относится к области создания устройств, предназначенных для интенсивной пластической деформации материалов методом равноканального углового прессования.

Изобретение относится к кузнечному производству и может быть использовано при изготовлении крупногабаритных колец и обечаек, наружный диаметр которых превосходит межколонное расстояние пресса.

Изобретение относится к трубному производству и может быть использовано на прессах при прошивке в стакан слитков, разлитых сифонным способом. .

Изобретение относится к устройствам для упрочнения металла в процессе обработки. .
Изобретение относится к области металлургии и может быть использовано в машиностроении, авиадвигателестроении и медицине при изготовлении полуфабрикатов из двухфазных титановых сплавов путем термомеханической обработки, сопровождающейся изменением механических свойств материала
Наверх