Способ получения электропроводящего бетона

Изобретение относится к производству композиционных материалов на основе природного минерального сырья с получением электропроводящего бетона, обладающего электропроводностью и удельным сопротивлением, достаточным для того, чтобы использовать материал в качестве электропроводящего конструкционного и нагревательного конструкционного материала, работающего в широком интервале температур. Технический результат - получение дешевого и состоящего из доступных компонентов конструкционного электропроводящего материала, повышение его конструкционных свойств. В способе получения электропроводящего бетона, включающем перемешивание цемента, порошкообразного графита и песка с последующим добавлением в смесь воды и перемешиванием с получением смеси, ее формование и сушку до полного затвердевания, сначала осуществляют перемешивание порошкообразного графита с цементом, затем с песком, а сушку ведут при комнатной температуре, причем смесь содержит компоненты при следующем соотношении, мас.%: порошкообразный графит - 25-35, цемент 20-30, песок 25-45, вода - остальное. 3 табл.

 

Изобретение относится к производству композиционных материалов на основе природного минерального сырья с получением электропроводящего бетона, обладающего электропроводностью и удельным сопротивлением, достаточным для того, чтобы использовать материал в качестве электропроводящего конструкционного и нагревательного конструкционного материала, работающего в широком интервале температур.

Известен способ получения электропроводящих материалов на основе портландцементов и углеродосодержащих материалов, использующих в качестве связующего вещества портландцемент, а в качестве наполнителя - углеродную сажу, технический уголь и т.д. (см. WO 9600197 А, 04.01.1996. SU 774440 A1, 15.05.1994. RU 2037895 C1, 19.06.1995. DE 3023133 А, 07.01.1982. US 4464421 A, 07.08.1984.).

Недостатком приведенных выше исходных смесей компонентов является нестабильность электрических свойств композиционных материалов, недостатком получаемых материалов - невысокий предел рабочих температур вследствие окисления сажи и разрушения гидратированных минералов, формирующих так называемый клинкер портландцемента, а также некоторая сложность технологии производства.

Наиболее близким к заявляемому способу является создание композитного электропроводного материала (см. RU 2245859, МПК7 С 04 В 28/02, H 01 C 7/00, H 05 B 3/14, опубл. 10.02.2005 г.).

Недостатком прототипа является то, что в его состав входят шамот и/или диабаз, причем размером частиц не более 2 мм. Как известно, под шамотом понимают огнеупорную глину или каолин, предварительно обожженные до потери пластичности и удаления химически связанной воды и определенной степени спекания. В готовом виде в природе не встречается, следовательно, присутствует необходимость в транспортной доставке шамота и его последующем дополнительном измельчении. Диабаз встречается в природе, но его распространение ограничено, что, как и в случае с шамотом, также вызывает дополнительные трудности в производстве материала, связанные с транспортными расходами.

Кроме того, возможность длительной эксплуатации дорожного покрытия, которое содержит множество нагревательных пластин, изготовленных из композитного электропроводного материала, электрически взаимно соединенных между собой, затруднительна, а замена отдельных, вышедших из строя пластин представляется проблематичной. Также процесс получения включает в себя гидротермическую обработку, что затруднительно в полевых условиях.

Полученный материал прототипа всегда имеет конечную геометрическую форму и размеры, следовательно, не может быть использован в качестве заливочной массы.

Задачей предлагаемого технического решения является получение электропроводящего материала с широким диапазоном величин удельного электрического сопротивления, а также возможностью длительного использования в качестве нагревательного элемента, его дешевизна и доступность компонентов, входящих в состав смеси, а также упрощение производства электропроводящего материала и повышение его конструкционных свойств.

Решение поставленной задачи достигается тем, что в известном способе получения электропроводящего бетона, включающем перемешивание цемента, порошкообразного графита и песка с последующим добавлением в смесь воды и перемешиванием с получением смеси, ее формование и сушку до полного затвердевания, согласно изобретению сначала осуществляют перемешивание порошкообразного графита с цементом, затем с песком, а сушку ведут при комнатной температуре, причем смесь содержит компоненты при следующем соотношении, в мас.%:

порошкообразный графит15-35
цемент20-30
песок25-45
водаостальное

Данное изобретение позволит получить электропроводящий бетон, дешевый и состоящий из доступных компонентов, входящих в состав смеси, а также упростить производство электропроводящего материала, повысить его конструкционные свойства и использовать в качестве нагревательного элемента.

Сущность способа поясняется примерами реализации способа и таблицами 1, 2 и 3, в которых приведены массовые соотношения компонентов, электрические и механические свойства образцов.

Способ осуществляют следующим образом: изготовляют образцы согласно пропорциям из таблицы 1 и исследуют их электрические и механические свойства.

Пример 1.

Исходную сырьевую смесь, состоящую из 25 частей графита и 30 частей цемента, тщательно перемешивают, затем добавляют 35 частей песка (см. табл.1), снова перемешивают и после чего добавляют 10 частей воды. Полученную сырьевую смесь перемешивают, затем формуют образец, который через 32 часа после сушки при комнатной температуре превращается в электропроводящий, а также нагревательный конструкционный материал. Данный образец является оптимальным из экспериментальных образцов (см. табл.2, 3).

Пример 2.

В случае, если смесь содержит 33 части графита и 22 части цемента, 35 части песка, образец постепенно теряет механическую прочность и теряет свои конструкционные свойства (см. табл.3), увеличивая при этом свою проводимость (см. табл.2).

Пример 3.

В случае, если смесь содержит 20 частей графита и 30 частей цемента, 35 частей песка, образец начинает нелинейно терять проводимость (см. табл.2) и незначительно увеличивать свои конструкционные свойства (см. табл.3).

Пример 4.

В случае, если смесь содержит 35 частей графита и 20 частей цемента, 35 частей песка, образец становится хрупким и теряет свои конструкционные свойства (см. табл.3), увеличивая при этом свою проводимость (см. табл.2).

Пример 5.

В случае, если смесь содержит 15 частей графита и 30 частей цемента, 40 частей песка, образец резко теряет проводимость и перестает быть электропроводящим материалом (см. табл.2), хотя конструкционные свойства при этом возрастают (см. табл.3).

Электрические свойства образцов имеют резко нелинейный характер зависимости при содержании графита менее 20 частей.

Результаты получения электропроводящего бетона, приведенные в таблицах (2, 3), позволяют сделать выводы о том, что его можно использовать как электропроводящий бетон, проводимость которого регулируется составом смеси, а достаточно высокий предел прочности на сжатие позволяет использовать его в качестве строительного материала.

Использование предлагаемого способа получения электропроводящего бетона позволит по сравнению с прототипом получить электропроводящий конструкционный материал, дешевый и состоящий из доступных компонентов, входящих в состав смеси, а также упростить производство электропроводящего бетона, повысить его конструкционные свойства и использовать в качестве нагревательного элемента.

Таблица 1

Массовые соотношения компонентов, входящих в состав электропроводящего бетона
№ п/п образцаСостав,%
графитцементпесоквода
125303510
233223510
320303515
435203510
515304015
Таблица 2
№ п/п образцаЭлектрические параметры
U1, BI1, АR1, ОмU2, BI2, AR2, ОмU3, BI3, АR3, Ом
11100,43255,8550,18305,6240,021200
21100,72152,8550,36152,8240,06400
31100,14785,7550,051100240,012400
41100,8137,5550,45122,2240,12200
51100-550-240-
Таблица 3
№ п/п образцаМеханические параметры
Предел прочности на сжатие, Па
139,3
225,5
343,6
416,4
547,1

Способ получения электропроводящего бетона, включающий перемешивание цемента, порошкообразного графита и песка с последующим добавлением в смесь воды и перемешиванием с получением смеси, ее формование и сушку до полного затвердевания, отличающийся тем, что сначала осуществляют перемешивание порошкообразного графита с цементом, затем с песком, а сушку ведут при комнатной температуре, причем смесь содержит компоненты при следующем соотношении, мас.%

Порошкообразный графит15-35
Цемент20-30
Песок25-45
ВодаОстальное



 

Похожие патенты:
Изобретение относится к промышленности строительных материалов и может быть использовано при производстве бетонных изделий и изготовлении монолитных конструкций.
Изобретение относится к строительным материалам, в частности к составам строительных растворов с повышенной сохраняемостью и морозостойкостью, используемых для кладки сооружений из кирпича, бетонных камней и камней из легких пород.

Изобретение относится к производству строительных материалов, в частности получению монолитного бетона или железобетона, применяемых в гражданском и промышленном строительстве.

Изобретение относится к строительным материалам и может быть использовано для изготовления изделий из мелкозернистого бетона как в гражданском, так и в промышленном строительстве.
Изобретение относится к строительным материалам и касается способа регулирования воздухововлечения бетонной смеси путем введения с водой затворения комплексной органоминеральной добавки на основе продукта лесохимического производства и тонкодисперсного материала - отхода производства цемента.

Изобретение относится к строительным материалам и может быть использовано для изготовления изделий из бетона автоклавного твердения как в гражданском, так и в промышленном строительстве.
Изобретение относится к способу изготовления бетона или строительного раствора на основе растительного сырья. .
Изобретение относится к технологии материалов гидратационного твердения и может быть использовано для получения строительных растворов с низким содержанием естественных радионуклидов (ЕРН).
Изобретение относится к области производства бетонных изделий, декоративных плит, дорожных и тротуарных покрытий и может быть использовано в строительных и отделочных работах.
Изобретение относится к области композиционных строительных материалов, которые могут быть использованы для защиты бетонных, кирпичных и каменных поверхностей ремонтируемых, реставрируемых и строящихся зданий и сооружений.

Изобретение относится к промышленности строительных материалов и может быть использовано для получения литых смесей для изготовления отделочных плит и панелей, подоконных плит, лестничных ступеней и для устройства монолитных конструкций и полов, а также при производстве сухих смесей, предназначенных для проведения внутренней и наружной отделки зданий и сооружений.
Изобретение относится к составу порошкообразной комплексной добавки для строительных смесей, в том числе бетонов и растворов, используемых в производстве бетонных и железобетонных изделий.
Изобретение относится к составу химической добавки для цементных бетонов и строительных растворов и может найти применение в строительстве при возведении железобетонных сооружений.

Изобретение относится к строительным материалам и может быть использовано при производстве эффективных теплоизоляционных бетонов. .
Изобретение относится к промышленности строительных материалов и может быть использовано при производстве бетонных изделий и изготовлении монолитных конструкций.
Изобретение относится к составам, преимущественно бетонам, для изготовления бетонных конструкций как монолитных, так и сборных, используемых в строительстве. .
Изобретение относится к строительным материалам и может быть использовано при изготовлении биостойких строительных материалов и изделий, например мастик, замазок, растворов, изделий ячеистой структуры.
Изобретение относится к составу комплексной добавки для строительной смеси и может найти применение в промышленности строительных материалов при изготовлении бетонных и железобетонных изделий и конструкций, а также в нефтедобывающей промышленности для тампонажных работ при бетонировании скважины
Наверх