Железо-хромникелевый сплав

Изобретение относится к металлургии легированных сталей и сплавов, используемых в ядерной и тепловой энергетике для изготовления теплообменного оборудования. Техническим результатом изобретения является повышение сопротивления межкристаллитной коррозии при температурах до 650°С и повышение технологической прочности при сварке. Предложен железо-хром-никелевый сплав, содержащий компоненты мас.%: углерод - 0,005-0,03, кремний - 0,10-0,60, марганец - 0,80-1,70, хром - 19,5-23,0, никель - 30,5-33,0, молибден - 2,5-4,0, ниобий - 0,9-1,20, иттрий - 0,005-0,01, азот - 0,005-0,025, железо и примеси - остальное, при этом содержание примесей следующее, мас.%: алюминий ≤0,15, кобальт ≤0,05, медь ≤0,15, титан ≤0,10, сера ≤0,010, фосфор ≤0,015. 1 з.п. ф-лы, 3 табл.

 

Изобретение относится к металлургии легированных сталей и сплавов, используемых в ядерной и тепловой энергетике для изготовления теплообменного оборудования. Одной из областей использования этого сплава является изготовление парогенераторных труб, работающих при температурах до 350°С в контакте со средой вода-пар и до 750°С в контакте с паром и гелиевым теплоносителем.

Известны применяемые в настоящее время для изготовления парогенераторных труб стали марок 08Х18Н10Т, 03Х17Н12М2 (AISI 316L) и сплав Инконель 600. Основным их недостатком является низкая стойкость против локальных видов коррозии (питтинговой, межкристаллитной и коррозионного растрескивания) в среде вода - пар.

Наиболее близким по составу ингредиентов является сплав марки Incoloy alloy FM 65 [1], содержащий, мас.%:

углеродне более 0,05
кремнийне более 0,50
марганецне более 1,0
хром19,5-23,5
никель38,0-46,0
молибден2,5-3,5
титан0,60-1,20
медь1,50-3,0
фосфорне более 0,03
серане более 0,03
алюминийне более 0,20
железоостальное

Указанный сплав обладает высокими механическими и коррозионными свойствами, в том числе в контакте с морской водой.

Однако известный сплав имеет недостаточную стойкость против межкристаллитной коррозии в области температур 500-650°С, он относится к категории трудносвариваемых материалов, так как имеет пониженную технологическую прочность при сварке.

Техническим результатом изобретения является повышение сопротивления межкристаллитной коррозии при температурах до 650°С и повышение технологической прочности при сварке.

Поставленный технический результат достигается за счет того, что сплав, содержащий углерод, кремний, марганец, хром, никель, молибден, титан, медь и железо, дополнительно введены ниобий, иттрий и азот при следующем соотношении компонентов, мас.%:

углерод0,005-0,03
кремний0,10-0,60
марганец0,8-1,7
хром19,5-23,0
никель30,5-33,0
молибден2,5-4,0
ниобий0,9-1,2
иттрий0,005-0,01
азот0,005-0,025
железо и примесиостальное

при этом в качестве примесей он содержит следующие элементы, мас.%:

алюминийне более 0,15
кобальтне более 0,05
медьне более 0,15
титанне более 0,10
серане более 0,010
фосфорне более 0,015

Дополнительное введение ниобия, который не выгорает при сварке и обладает существенно меньшей диффузионной подвижностью в сплаве по сравнению с титаном, обеспечивает стойкость сплава и его сварных соединений к межкристаллитной коррозии в воде и паре высоких параметров при длительной эксплуатации при температурах 500-650°С.

За счет дополнительного легирования сплава иттрием, повышения содержания марганца, снижения содержания никеля, меди, серы, фосфора достигается повышение сопротивления образованию горячих трещин при сварке.

Ограничение содержания кобальта позволит снизить радиоактивное загрязнение оборудования АЭС, основной вклад в который (более 80%) вносят изотопы кобальта 60Со и 58Со [2].

Авторами проведена выплавка в вакуумной индукционной печи 100-килограммовых слитков заявленного сплава и одного такого же слитка известного сплава. В шихте для выплавки заявляемого сплава использовали никель марки H1 и H1-У, содержащий менее 0,1 мас.% кобальта. Далее слитки были прокованы на заготовки размером 50×50×100 мм, а затем прокатаны на пластины толщиной 10 мм. Пластины заявленной и известной марок сплавов были подвергнуты термической обработке при температуре аустенизации 1050°С в течение 1 ч с последующим охлаждением на воздухе.

Из термообработанного металла были изготовлены образцы на статическое растяжение, пластины толщиной 2,0 мм для испытаний на межкристаллитную коррозию, а также пластины толщиной 2,5 мм для определения сварочно-технологических свойств. Заготовки, из которых были изготовлены образцы для коррозионных испытаний, были предварительно подвергнуты тепловым выдержкам при температурах 500, 550, 600 и 650°С в течение от 10 до 1000 ч.

Испытания на растяжение проводили на установке УМЭ-10Т на воздухе при скорости деформирования 3·10-3 с-1 при температурах 20 и 350°С.

Технологичность определяли при сварке пластин (критерий - технологическая прочность Акр) методом аргонодуговой сварки на машине ЛТП1-6.

Испытания на межкристаллитную коррозию выполняли в растворе: 1000 мл воды, 100 мл серной кислоты и 160 г сернокислой меди с добавками медной стружки (метод AM, ГОСТ 6032-84). После выдержки в растворе образцы были загнуты на 90° и подвергнуты металлографическому анализу.

Химический состав заявляемой и известной марок сплавов приведен в таблице 1, результаты испытаний - в таблицах 2 и 3.

Таблица 3

Области склонности к межкристаллитной коррозии заявляемого и известного сплавов
СплавУсловный № плавкиТемпература тепловых выдержек, °С
500550600650
Длительность выдержек, ч
101001000101001000101001000101001000
Предлагаемый1оооооооооооо
2оооооооооооо
3оооооооооооо
Известный4оооо
Примечание: о - нет коррозии

• - глубина межкристаллитной коррозии более 30 мкм.

Как видно из таблицы 1, заявляемая сталь содержит в 3 раза меньше кобальта, чем известная, что приведет к снижению дозовых нагрузок на персонал АЭС.

Как видно из таблиц 2 и 3, результаты испытаний подтверждают, что заявляемая марка сплава превосходит известную по технологической прочности и сопротивлению межкристаллитной коррозии.

Ожидаемый технико-экономический эффект от использования предлагаемого сплава выразится в увеличении надежности и срока службы оборудования АЭС за счет повышения коррозионной стойкости, уменьшения стоимости оборудования вследствие удешевления сварочных работ и снижения дозовых нагрузок персонала АЭС.

ЛИТЕРАТУРА

1. Вегст Ц.В. Ключ к сталям, издание 15-е, изд. Verlag Stahlschlussel Wegst GMBH, 1989, р.379.

2. Доза облучения персонала на АЭС с реакторами PWR. Экспресс - информация ЦНИИАТОМИНФОРМ, 1990 г., №35, с.8.

1. Железо-хромникелевый сплав, содержащий углерод, кремний, марганец, хром, никель, молибден и железо, отличающийся тем, что он дополнительно содержит ниобий, азот и иттрий при следующем соотношении компонентов, мас.%:

Углерод0,005-0,03
Кремний0,10-0,60
Марганец0,8-1,7
Хром19,5-23,0
Никель30,5-33,0
Молибден2,5-4,0
Ниобий0,9-1,20
Иттрий0,005-0,01
Азот0,005-0,025
Железо и примесиОстальное

2. Железо-хромникелевый сплав по п.1, отличающийся тем, что в качестве примесей он содержит алюминий, кобальт, медь, титан, серу и фосфор при их содержании, мас.%:

Алюминий≤0,15
Кобальт≤0,05
Медь≤0,15
Титан≤0,10
Сера≤0,010
Фосфор≤0,015



 

Похожие патенты:
Изобретение относится к области металлургии, а именно к созданию коррозионно-стойкой стали, используемой в качестве листов или фольги в паяных сотовых панелях, деталях обшивки, в деталях внутреннего набора, работающих до 450°С.

Сталь // 2285735
Изобретение относится к черной металлургии, в частности к изысканию состава стали для ножей, предназначенных для резки металлолома. .

Изобретение относится к металлургии, а именно к составам сталей для изготовления электросварных прямошовных труб большого диаметра с увеличенным ресурсом эксплуатации.

Изобретение относится к области металлургии, в частности к выбору состава жаропрочной стали, которая может быть использована для изготовления роторов, валов и других деталей паровых турбин высокого и среднего давления.

Изобретение относится к металлургии и может быть использовано при производстве толстолистового проката из хладостойкой стали для судостроения, топливно-энергетического комплекса, транспортного и тяжелого машиностроения, мостостроения и других отраслей.

Изобретение относится к получению горячекатаного стального листа для магистральных трубопроводов с высокой вязкостью при сверхнизкой температуре. .
Изобретение относится к стали, используемой, например, при изготовлении высоконагруженных шестерен коробки перемены передач автомобиля. .

Изобретение относится к конструкционным сталям для атомного энергомашиностроения при производстве контейнерной техники для хранения и транспортировки отработавшего ядерного топлива и радиоактивных отходов.

Изобретение относится к черной металлургии, в частности к производству стали для железнодорожных рельсов. .
Изобретение относится к металлургии, в частности к составу дисперсионно-твердеющей мартенситной нержавеющей стали, предназначенной для изготовления авиационно-космических аппаратов.

Изобретение относится к металлургии стали, в частности к области легированных коррозионно-стойких высокопрочных сталей, используемых для высоконагруженных деталей в машиностроении и судостроении
Сталь // 2327799
Изобретение относится к области металлургии и может быть использовано для изготовления деталей оборудования химической, нефтяной, газовой промышленности
Изобретение относится к области металлургии и может быть использовано при изготовлении синтетического аммиака, гидрировании углей, при получении искусственного бензина и в других процессах химической, нефтяной, газовой промышленности
Изобретение относится к области металлургии и может быть использовано для изготовления роторов, валов и других деталей паровых турбин высокого и среднего давления

Изобретение относится к области металлургии, в частности к производству трубной заготовки диаметром от 80 до 180 мм

Изобретение относится к области металлургии, в частности к производству трубной заготовки диаметром от 75 до 180 мм

Изобретение относится к области металлургии, в частности к получению трубной заготовки диаметром от 80 до 180 мм

Изобретение относится к области металлургии, в частности к производству трубной заготовки диаметром от 80 до 180 мм
Изобретение относится к черной металлургии и может быть использовано при изготовлении деталей брони стационарных объектов и корпусов транспортных средств, подвергаемых воздействию бронебойных снарядов калибром 30-125 мм
Изобретение относится к области металлургии, а именно к составам нержавеющих хромоникелевых сталей, используемых в судостроении, газовой и нефтеперерабатывающей промышленности
Наверх