Способ возбуждения широкополосной антенной решетки и широкополосная антенная решетка (варианты) для его осуществления

Изобретение относится к области радиотехники, в частности к антенной технике, и может быть использовано при проектировании антенных решеток для систем связи, локации и радиоэлектронной борьбы. Технический результат - повышение коэффициента полезного действия антенны, дальности действия и эффективности радиосистемы за счет обеспечения возможности возбуждения электромагнитного поля в виде биполярного сверхкороткого импульсного сигнала, что повышает направленность антенной решетки. Согласно предложенным техническим решениям информативный сигнал преобразуют в электромагнитное поле в линии передачи и разделяют полученное электромагнитное поле по n рупорным излучателям с ТЕМ-волной антенной решетки. После разделения электромагнитного поля по рупорным излучателям одну часть электромагнитного поля униполярного моноимпульса задерживают во времени на половину длительности информативного сигнала, преобразуют фазу этой части электромагнитного поля на противоположную и интерферируют ее с другой частью электромагнитного поля. Широкополосная антенная решетка для осуществления указанного способа содержит систему возбуждения на n выходов и связанный с ней излучающий раскрыв, выполненный из n рупорных излучателей в ТЕМ-волной. 4 н.п. ф-лы, 5 ил.

 

Изобретение относится к области радиотехники, в частности к антенной технике, и может быть использовано при проектировании антенных решеток для систем связи, локации и радиоэлектронной борьбы.

Наиболее близким к заявляемым техническим решениям является способ возбуждения широкополосной антенной решетки [1], заключающийся в том, что преобразуют информативный сигнал в электромагнитное поле в линии передачи, разделяют полученное электромагнитное поле по n рупорным излучателям антенной решетки с ТЕМ-волной, которое затем излучается. Широкополосная антенная решетка для осуществления указанного способа содержит систему возбуждения на n выходов и связанный с ней излучающий раскрыв, выполненный из n рупорных излучателей с ТЕМ-волной.

Недостатком указанных технических решений является малый коэффициент полезного действия антенной решетки при возбуждении ее информативным сигналом в виде сверхкороткого униполярного моноимпульса [2]:

где Um - амплитуда импульса;

τuo - длительность импульса по нулевому уровню;

t - время;

R - расстояние, на которое распространяется импульс;

Vo - скорость распространения импульса.

При таком информативном сигнале в раскрыве антенной решетки возбуждается электромагнитное поле в виде моноимпульсного сигнала. Коэффициент направленного действия Du антенны, в раскрыве которой возбуждается поле в виде моноимпульса, определяется выражением [2]:

где Dωo=4π/λo2Ao - коэффициент направленного действия антенны для монохроматического колебания с длиной волны λo,

где λouoVo;

Ao - действующая площадь апертуры антенны.

Из выражения (2) видно, что коэффициент полезного действия γ антенны, возбужденной сверхкоротким моноимпульсом, составляет всего 25% по сравнению с коэффициентом полезного действия γ антенны, возбужденной монохроматическим колебанием с соответствующей длиной волны, что снижает дальность действия и эффективность радиосистемы в четыре раза по сравнению с радиосистемой, работающей на монохроматических колебаниях.

В то же время расчеты и эксперимент показывают [2], что при возбуждении в раскрыве антенны электромагнитного поля Е в виде биполярного импульса:

Коэффициент направленного действия DБ становится равным

Таким образом, возбуждение в раскрыве антенны электромагнитного поля в виде биполярного импульса (3) увеличивает коэффициент направленного действия DБ антенны в 9,5 раз по сравнению с коэффициентом направленного действия Du для униполярного моноимпульса (1) и в 2,37 раз по сравнению с коэффициентом направленного действия Dωo для монохроматического колебания, что повышает коэффициент полезного действия антенны, дальности действия и эффективность радиосистемы.

Возбуждение электромагнитного поля в виде биполярного импульса (3) непосредственно генератором осуществить невозможно, когда длительность импульса τuo становится короче нескольких наносекунд. Однако возбуждение электромагнитного поля в виде биполярного импульса (3) в раскрыве антенны возможно непосредственно в самой антенне.

Задачей предлагаемой группы изобретений является повышение коэффициента полезного действия антенны, дальности действия и эффективности радиосистемы за счет обеспечения возможности возбуждения электромагнитного поля в виде биполярного сверхкороткого импульсного сигнала, что повышает направленность антенной решетки.

Решение поставленной задачи достигается тем, что в способе возбуждения широкополосной антенной решетки, при котором информативный сигнал преобразуют в электромагнитное поле в линии передачи и разделяют полученное электромагнитное поле по n рупорным излучателям с ТЕМ-волной антенной решетки, после разделения электромагнитного поля по рупорным излучателям одну часть электромагнитного поля униполярного моноимпульса задерживают во времени на половину длительности информативного сигнала, преобразуют фазу этой части электромагнитного поля на противоположную и интерферируют ее с другой частью электромагнитного поля.

Широкополосная антенная решетка для осуществления указанного способа (первый вариант) содержит систему возбуждения на n выходов и связанный с ней излучающий раскрыв, выполненный из n рупорных излучателей с ТЕМ-волной, при этом каждый рупорный излучатель состоит из двух рупоров, один из которых подключен к первому выходу делителя на два направления, вход которого подключен к одному из n выходов системы возбуждения, а второй рупор выполнен противофазным относительно первого рупора и подключен к выходу линии задержки длиной, равной половине длины моноимпульса, вход которой подключен ко второму выходу делителя на два направления.

Широкополосная антенная решетка для осуществления указанного способа (второй вариант) содержит систему возбуждения на n выходов и связанный с ней излучающий раскрыв, выполненный из n рупорных излучателей с ТЕМ-волной, при этом каждый из n рупоров антенной решетки подключен к первому выходу делителя на два направления, вход которого подключен к одному из n выходов системы возбуждения, а к второму выходу делителя на два направления подключен вход линии задержки с длиной, равной четверти длины моноимпульса, к выходу которой подключен короткозамкнутый отражатель.

Широкополосная антенная решетка для осуществления указанного способа (третий вариант) содержит систему возбуждения на n выходов и связанный с ней излучающий раскрыв, выполненный из n рупорных излучателей с ТЕМ-волной, при этом каждый из n рупоров антенной решетки выполнен в виде биконического рупора, вход которого подключен к одному из n выходов системы возбуждения, а половина раскрыва биконического рупора подключена к отражателю, расположенному на расстоянии от вершины биконического рупора, равном четверти длины моноимпульса.

В заявляемых технических решениях для повышения коэффициента полезного действия антенны, дальности действия и эффективности радиосистемы обеспечивается возможность возбуждения электромагнитного поля в виде биполярного сверхкороткого импульсного сигнала, что повышает направленность антенной решетки.

Сущность изобретения поясняется чертежами, где на фиг.1 представлены временные диаграммы, поясняющие сущность предлагаемого способа возбуждения широкополосной антенной решетки; а на фиг.2, фиг.3, фиг.4 и фиг.5 приведены варианты широкополосной антенной решетки.

На фиг.1 приведены:

а - диаграмма униполярного информативного моноимпульсного сигнала, поступающего на вход широкополосной антенной решетки;

б - диаграмма униполярного задержанного противофазного моноимпульсного сигнала;

в - диаграмма биполярного импульса в раскрыве антенны.

На фиг.2 приведена структурная схема широкополосной антенной решетки, где

1 - входной коаксиальный разъем антенны;

2 - система возбуждения на n выходов;

3 - выходные разъемы системы возбуждения;

4 - входной разъем рупорного излучателя;

5 - рупорный излучатель.

На фиг.3 приведен первый вариант выполнения рупорного излучателя широкополосной антенной решетки, где

4 - входной разъем рупорного излучателя 5;

6 - делитель на два направления;

7 - линия задержки длиной L;

8 - рупор.

На фиг.4 приведен второй вариант выполнения рупорного излучателя широкополосной антенной решетки, где

4 - входной разъем рупорного излучателя 5;

6 - делитель на два направления;

8 - рупор;

9 - линия задержки длиной L/2;

10 - отражатель короткозамкнутый.

На фиг.5 приведен третий вариант выполнения рупорного излучателя широкополосной антенной решетки, где

4 - входной разъем рупорного излучателя 5;

11 - биконический рупор;

12 - отражатель.

Линии задержки 7 и 9 представляют собой отрезок однородной передающей линии заданной длины (см. А.Л.Фельдштейн и др. Справочник по элементам волноводной техники. Изд. - 2е, М., Сов. Радио, - 1967 г., стр.36, рис.1.18).

Реализация предлагаемого способа возбуждения широкополосной антенной решетки выполняется следующим образом.

Информативный униполярный сигнал (фиг.1, а) поступает на вход широкополосной антенной решетки, из него формируется противофазный униполярный сигнал (фиг.1, б), который задерживается на половину длительности импульса. Импульсы (фиг.1, а и фиг.1, б) поступают в раскрыв антенной решетки, интерферируют друг с другом и формируют в раскрыве биполярный импульс (фиг.1, в). Этот биполярный импульс электромагнитного поля, возбужденный в раскрыве широкополосной антенной решетки, создает поле излучения, которое согласно выражению (4) обеспечивает сверхнаправленный коэффициент направленного действия антенны в 2,37 раза, превосходящий коэффициент направленного действия антенны, возбужденной монохроматическим сигналом. Сверхнаправленный коэффициент направленного действия обеспечивает повышение коэффициента полезного действия соответствующей радиосистемы, увеличивает дальность действия и эффективность радиосистемы за счет увеличения отношения сигнал/шум на входе приемного устройства.

Первый вариант широкополосной антенной решетки (фиг.2, фиг.3), реализующий предлагаемый способ возбуждения, работает следующим образом.

На входной коаксиальный разъем 1 широкополосной антенной решетки поступает информативный униполярный сигнал (фиг.1, а), который преобразуется в электромагнитное поле в линии передачи и разделяется выходными разъемами 3 системы возбуждения на n выходов, каждый из которых подключается к входному разъему 4 рупорного излучателя 5 (фиг.2).

Электромагнитное поле информативного униполярного импульса (фиг.1, а) поступает на входной разъем 4 рупорного излучателя 5 (фиг.3), который состоит из двух рупоров 8. Один из рупоров 8 подключается к первому выходу делителя 6 на два направления, вход которого подключен к входу 4 рупорного излучателя 5. В результате чего одна часть электромагнитного поля униполярного импульса (фиг.1, а) возбуждает раскрыв первого рупора 8 полем E1 (фиг.3). Второй выход делителя 6 подключен к входу линии задержки 7, выполненной в виде отрезка однородной линии передачи длиной L, равной

К выходу линии задержки 7 подключается второй рупор 8 противофазно с первым рупором 8.

Вторая часть электромагнитного поля униполярного импульса (фиг.1, а) задерживается на половину длительности импульса в линии задержки 7, меняет фазу на противоположную (фиг.1, б) и возбуждает раскрыв второго рупора 8 электромагнитным полем E2 униполярного задержанного на половину длительности импульса, противофазного полю E1 первого рупора.

В свою очередь электромагнитные поля двух униполярных импульсов E1 и Е2, интерферируя в эквивалентном общем раскрыве антенной решетки, возбуждают в нем электромагнитное поле биполярного импульса (фиг.1, в).

В первом варианте реализации широкополосной антенной решетки (фиг.2, фиг.3) повышение коэффициента полезного действия антенны, дальности действия и эффективности радиосистемы достигается путем:

- разделения униполярного импульса на две равные части;

- задержки и перефазировки одной из частей униполярного импульса;

- интерференции задержанной противофазной части импульса с другой частью униполярного импульса и возбуждения в раскрыве антенной решетки биполярного импульса.

Второй вариант широкополосной антенной решетки (фиг.2, фиг.4), реализующий предлагаемый способ возбуждения, работает следующим образом.

После разделения на n выходов (выходные разъемы 3 системы возбуждения) электромагнитное поле униполярного импульса (фиг.1, а) поступает на вход 4 рупорного излучателя 5 (фиг.4), который подключен к делителю 6 на два направления, к первому выходу которого подключен рупор 8. Ко второму выходу делителя 6 подключена линия задержки 9, выполненная в виде однородной линии передачи длиной L/2, равной

К выходу линии задержки 9 подключен отражатель короткозамкнутый 10.

Электромагнитное поле униполярного импульса (фиг.1, а) делится в делителе 6 на две равные части, при этом одна часть в виде униполярного импульса (фиг.1, а) поступает в рупор и возбуждает в его раскрыве поле E1. Другая часть униполярного импульса поступает в линию задержки 9, задерживается на ее выходе на четвертую часть длительности импульса, отражается от отражателя 10, при этом, меняя фазу на противофазную, распространяется в линии задержки 9 в обратную сторону, в результате задерживаясь еще на четвертую часть длительности импульса. В итоге задержанный на половину длительности униполярного импульса противофазный униполярный импульс (фиг.1, б) в виде электромагнитного поля E2, поступает в раскрыв рупора 8, где, интерферируя с первой частью импульса (фиг.1, а), возбуждает в раскрыве электромагнитное поле в виде биполярного импульса (фиг.1, в).

Во втором варианте реализации широкополосной антенной решетки (см. фиг.2, фиг.4) повышение коэффициента полезного действия антенны, дальности действия и эффективности радиосистемы достигается путем:

- разделения униполярного импульса на две равные части;

- задержки и отражения одной из частей униполярного импульса;

- интерференции отраженной противофазной части импульса с другой частью униполярного импульса и возбуждения в раскрыве антенной решетки, биполярного импульса.

Третий вариант широкополосной антенной решетки (фиг.2, фиг.5), реализующий предлагаемый способ возбуждения, работает следующим образом.

После разделения на n выходов (выходные разъемы 3 системы возбуждения), как в первом и втором вариантах, электромагнитное поле униполярного импульса (фиг.1, а) поступает на вход 4 биконического рупора 11 (фиг.5) и формируют цилиндрическую волну, распространяющуюся от центра к периферии биконического рупора. Половина раскрыва биконического рупора на расстоянии L/2, равном четвертой части длительности импульса, как показано в выражении (6), закрыта отражателем 12, который отражает и меняет фазу половины электромагнитного поля униполярного импульса (фиг.1, а) и направляет его в ту половину раскрыва, которая свободна от отражателя. В результате чего в половине раскрыва, свободной от отражателя, формируется поле униполярного импульса (фиг.1, а) E1 и поле противофазного задержанного на половину длительности импульса (фиг.1, б) E2, которые, интерферируя между собой, возбуждают в раскрыве, свободном от отражателя, электромагнитное поле биполярного импульса (фиг.1, в).

В третьем варианте реализации широкополосной антенной решетки (фиг.2, фиг.5) повышение коэффициента полезного действия антенны, дальности действия и эффективности радиосистемы достигается путем:

- возбуждения цилиндрического раскрыва биконического рупора униполярным импульсом;

- отражения и задержки половины электромагнитного поля униполярного импульса отражателем, перекрывающим половину раскрыва биконического рупора;

- интерференции отраженного и прямого униполярных импульсов и формирования в раскрыве биполярного импульса.

Технический результат от использования заявляемых технических решениях по сравнению с прототипом заключается в повышении коэффициента полезного действия антенны, дальности действия и эффективности радиосистемы за счет обеспечения возможности возбуждения электромагнитного поля в виде биполярного сверхкороткого импульсного сигнала, что повышает направленность антенной решетки.

Источники информации

1. Патент РФ №2167474, МПК H 01 Q 21/06.

2. А.Д.Французов. Энергетические характеристики апертурных антенн, излучающих сверхкороткие импульсы (СКИ). Проблемы интеллектуального и военного транспорта №7 в Сборнике статей "55 лет на службе Отечеству", часть II, С-Пб, 2005 г.

1. Способ возбуждения широкополосной антенной решетки, при котором информативный сигнал преобразуют в электромагнитное поле в линии передачи и разделяют полученное электромагнитное поле по n рупорным излучателям антенной решетки с ТЕМ-волной, отличающийся тем, что после разделения электромагнитного поля по рупорным изучателям одну часть электромагнитного поля униполярного моноимпульса задерживают во времени на половину длительности информативного сигнала, преобразуют фазу этой части электромагнитного поля на противоположную и интерферируют ее с другой частью электромагнитного поля.

2. Широкополосная антенная решетка, содержащая систему возбуждения на n выходов и связанный с ней излучающий раскрыв, выполненный из n рупорных излучателей с ТЕМ-волной, отличающаяся тем, что каждый рупорный излучатель состоит из двух рупоров, один из которых подключен к первому выходу делителя на два направления, вход которого подключен к одному из n выходов системы возбуждения, а второй рупор выполнен противофазным относительно первого рупора и подключен к выходу линии задержки длиной, равной половине длины моноимпульса, вход которой подключен к второму выходу делителя на два направления.

3. Широкополосная антенная решетка, содержащая систему возбуждения на n выходов и связанный с ней излучающий раскрыв, выполненный из n рупорных излучателей с ТЕМ-волной, отличающаяся тем, что каждый из n рупоров антенной решетки подключен к первому выходу делителя на два направления, вход которого подключен к одному из n выходов системы возбуждения, а к второму выходу делителя на два направления подключен вход линии задержки с длиной, равной четверти длины моноимпульса, к выходу которой подключен отражатель.

4. Широкополосная антенная решетка, содержащая систему возбуждения на n выходов и связанный с ней излучающий раскрыв, выполненный из n рупорных излучателей с ТЕМ-волной, отличающаяся тем, что каждый из n рупоров антенной решетки выполнен в виде биконического рупора, вход которого подключен к одному из n выходов системы возбуждения, а половина раскрыва биконического рупора подключена к отражателю, расположенному на расстоянии от вершины биконического рупора, равном четверти длины моноимпульса.



 

Похожие патенты:

Изобретение относится к антенной технике и может быть использовано как приемные антенны в радиовещании, радиосвязи и радиопеленгации. .

Изобретение относится к радиотехнике СВЧ и может быть использовано в радиолокационных антеннах частотного сканирования. .

Изобретение относится к микрополосковым антенным решеткам СВЧ-диапазона для использования в радиолокаторах, радиоинтроскопах, медицинских аппаратах, системах приема и передачи информации.

Изобретение относится к моноимпульсным антенным устройствам (АУ) с суммарно-разностной обработкой сигнала, используемым в радиолокационных системах точного автоматического сопровождения цели и в обзорных моноимпульсных радиолокационных системах.

Изобретение относится к области радиотехники, в частности к антенной технике и может использоваться при проектировании антенных решеток (АР) для систем связи, локации и радиоэлектронной борьбы метрового диапазона длин волн.

Изобретение относится к радиотехнике и может быть использовано в качестве приемной и/или передающей подземной фазированной антенной решетки (ПФАР). .

Изобретение относится к области антенной техники и может быть использовано в качестве подземной или приземной приемной или передающей антенны с управляемой диаграммой направленности (ДН).

Изобретение относится к радиотехнике и может быть использовано в системах радиопеленгации и радиосвязи

Изобретение относится к способам формирования и приема импульсных электромагнитных сигналов сверхкороткой длительности без несущей и может использоваться в радиосвязных и радиолокационных системах ближнего действия

Изобретение относится к антенной технике и предназначено для преобразования линейно-поляризованной электромагнитной волны в электромагнитную волну с круговой поляризацией вне зависимости от ориентации плоскости линейной поляризации падающей электромагнитной волны при заданном направлении распространения падающей волны

Изобретение относится к радиотехнике СВЧ и может быть использовано в обзорных трассовых радиолокаторах

Изобретение относится к радиотехнике СВЧ и может быть использовано в РЛС

Изобретение относится к антенной технике и может быть использовано для создания в условиях завода-изготовителя вибраторных, фазированных или цифровых антенных решеток (АР) для приема/передачи сигналов в метровом диапазоне частот различной поляризации в широком секторе однолучевого сканирования по срокам и стоимости на порядок меньшими, чем создание существующих крупногабаритных АР

Изобретение относится к конструктивному исполнению элементов радиотехнических систем и может быть использовано в качестве антенно-мачтового устройства для радиорелейных станций, работающих в полевых условиях

Изобретение относится к антенной технике преимущественно в СВЧ-диапазоне волн. Технический результат - повышение разрешающей способности антенны и увеличение точности пеленгации целей. Для этого в способе определения параметров антенны многоканальной радиолокационной станции сигналы, поступающие по каждому из каналов, оцифровывают, находят параметр антенны, определяемый как сумма действительной (мнимой) части отношения двух диаграмм направленности, полученных от различных участков антенны, и абсолютного значения этой части, называют его трансфункцией и с помощью трансфункций путем их перемножения ограничивают до требуемой величины область исследуемого пространства. С помощью трансфункций можно, в частности, получить от антенн с данным раскрывом эквивалент диаграммы направленности, ширина которого в 4 раза уже, чем ширина классической диаграммы направленности по половинному значению мощности при равномерном синфазном распределении поля в раскрыве. 21 ил.

Изобретение относится к управлению угловым движением космических аппаратов. Для разгрузки системы силовых гироскопов от накопленного кинетического момента используют токовые контуры фазированной антенной решетки (ФАР). По магнитным моментам этих контуров определяют суммарное значение магнитного момента ФАР в каждом режиме ее работы. Затем вычисляют разгрузочные моменты, создаваемые взаимодействием магнитных моментов ФАР с магнитным полем Земли. При выполнении условия разгрузки определяют подходящий режим работы ФАР с требуемым разгрузочным моментом и проводят разгрузку. Техническим результатом изобретения является повышение эффективности разгрузки системы силовых гироскопов. 5 ил.

Изобретение относится к радиосвязи. Технический результат - повышение эффективности воздействия сверхкоротких электромагнитных импульсов на средства широкополосной радиосвязи без увеличения напряженности электромагнитного поля. В способе варьируются амплитуда и частота повторения импульсов и одновременно регистрируются последствия их воздействия, при этом формируют пакеты импульсов при неизменной амплитуде и напряженности электрического поля, следующие с той же частотой повторения, при этом количество импульсов и временная задержка между импульсами в пакете имитируют состояния полезного модулированного сигнала, а частота следования пакетов имитирует символьную скорость передаваемой информации, при этом эффективность воздействия на средства широкополосной связи достигает максимальных значений при соблюдении следующих условий: количество импульсов сопоставимо с максимальным количеством состояний фазомодулированного сигнала. 3 ил.
Наверх