Состав для ингибирования солеотложений при добыче нефти (варианты)

Изобретение относится к области нефтедобычи, в частности к составам, предназначенным для предотвращения осаждения неорганических солей в скважинах и на скважинном оборудовании, системе сбора и транспорта нефти, а также в нефтяных пластах, разрабатываемых с использованием систем заводнения. Состав для ингибирования солеотложений содержит оксиэтилендифосфоновую кислоту (ОЭДФ), гидроокись натрия, окись цинка, этиленгликоль (ЭГ), лигносульфонат натрия и воду при следующем соотношении компонентов, мас.%: ОЭДФ 16,0-18,03, гидроокись натрия 5,83-7,0, окись цинка 5,42-7,12, ЭГ 25,0-40,0, лигносульфонат натрия 4,17-5,0, вода - остальное. В другом вариане состав для ингибирования солеотложений содержит оксиэтилендифосфоновую кислоту (ОЭДФ), гидроокись натрия, окись цинка, этиленгликоль (ЭГ), лигносульфонат натрия, нитрилотриметилфосфоновую кислоту (НТФ) и воду при следующем соотношении компонентов, мас.%: ОЭДФ 5,0-8,0, гидроокись натрия 5,83-7,0, окись цинка 5,42-7,12, ЭГ 25,0-40,0, лигносульфонат натрия 4,17-5,0, НТФ 6,67-9,0, вода - остальное. Состав обладает высокоэффективным комплексным защитным действием, не проявляет коррозионной активности и характеризуется низкой температурой замерзания, что позволяет его использовать в регионах с холодным климатом. 2 н.п. ф-лы, 5 табл., 1 ил.

 

Изобретение относится к области нефтедобычи, в частности к составам, предназначенным для предотвращения осаждения неорганических солей в скважинах и на скважинном оборудовании, системе сбора и транспорта нефти, а также в нефтяных пластах разрабатываемых с использованием систем заводнения.

Процесс добычи нефти сопровождается отложением твердых осадков неорганических веществ, накапливающихся в призабойной зоне пласта добывающих скважин, на стенках эксплуатационной колонны и лифтовых труб, в насосном оборудовании и наземных коммуникациях систем сбора и подготовки нефти. Главным источником выделения солей является вода, добываемая совместно с нефтью. Процессу солеотложения подвержены скважины и наземное оборудование, эксплуатирующееся в условиях обводнения добываемой продукции.

Выпадение химического вещества в осадок из раствора происходит в том случае, если концентрация этого вещества или иона в растворе превышает равновесную. Основными причинами выпадения нерастворимых осадков являются: смешивание вод различного состава, не совместимых друг с другом, перенасыщение вод в результате изменения термобарических условий в скважине либо насосе, испарение воды и т.д.

Ингибиторные способы защиты скважин и оборудования получили приоритетное распространение для предотвращения солеотложений в нефтепромысловой практике.

Известен состав для предотвращения карбонатных, сульфатных, железноокисных отложений, а также разрушения отложений карбонатных солей на тепломассопередающих поверхностях (RU 2146232, С02F 5/14, опубл. 2000.03.10). Состав содержит, мас.%: оксиэтилендифосфоновую кислоту (ОЭДФ) 15-40, соединение цинка 0,1-7,0, лигносульфонат натрия 10-30 и воду. Помимо эффективного предотвращения образования солевых отложений и ингибировании коррозии состав препятствует ионному обмену железа с кислотной частью реагента. Недостатком указанного известного состава является высокая температура замерзания, а следовательно, сложность его использования в регионах холодного климата, а также недостаточно высокая термостойкость.

Наиболее близким к предлагаемому техническому решению по совокупности признаков является состав (RU 2205157, С02F 5/14, опубл. 2003.05.27 - прототип), содержащий оксиэтилидендифосфоновую кислоту (ОЭДФ), гидроокись натрия, окись цинка и воду при следующем соотношении компонентов, мас.%: ОЭДФ 16,4-20,4, гидроокись натрия 6,5-8,3, окись цинка 5,9-7,32, вода - остальное. Недостатком этого состава также является высокая температура замерзания и сложность его использования в регионах холодного климата.

Задача, на решение которой направлены предлагаемые изобретения, состоит в создании состава, препятствующего образованию нерастворимых солевых отложений, обладающего высокоэффективным комплексным защитным действием; синтезируемого на основе доступного в промышленном объеме сырья; не проявляющего коррозионной активности и характеризующегося низкой температурой замерзания для возможности его использования в регионах с холодным климатом.

Поставленная задача решается тем, что предлагаемый состав для ингибирования солеотложений при добыче нефти (далее состав), содержащий оксиэтилендифосфоновую кислоту (ОЭДФ), гидроокись натрия, окись цинка и воду, дополнительно содержит лигносульфонат натрия и этиленгликоль (ЭГ) при следующем соотношении компонентов, мас.%:

ОЭДФ 16,0-18,03

Гидроокись натрия 5,83 - 7,0

Окись цинка 5,42-7,12

ЭГ 25,0-40,0

Лигносульфонат натрия 4,17-5,0

вода остальное.

В другом варианте поставленная задача решается тем, что состав для ингибирования солеотложений содержит оксиэтилендифосфоновую кислоту (ОЭДФ), гидроокись натрия, окись цинка и воду, этиленгликоль (ЭГ), лигносульфонат натрия, нитрилотриметилфосфоновую кислоту (НТФ) при следующем соотношении компонентов, мас.%:

ОЭДФ 5,0-8,0

Гидроокись натрия 5,83-7,0

Окись цинка 5,42-7,12

ЭГ 25,0-40,0

Лигносульфонат натрия 4,17-5,0

НТФ 6,67-9,0

Вода остальное.

Введение в состав лигносульфоната натрия 4,17-5,0 мас.% и этиленгликоля 25,0-40,0 мас.% позволяет получить состав, не только обладающий высокоэффективным комплексным ингибирующим действием солеотложений, но и не проявляющий коррозионной активности и характеризующийся низкой температурой замерзания для возможности его использования в регионах с холодным климатом.

Кроме того, вариант состава для ингибирования, содержащий нитрилотриметилфосфоновую кислоту (НТФ) в количестве 6,67-9,0 мас.%, а ОЭДФ в количестве 5,0-8,0 мас.%. позволяет не только снизить содержание дорогостоящих компонентов (ОЭДФ), но и повысить эффективность в отношении сернокислых солей.

Для приготовления состава были использованы следующие компоненты:

ОЭДФ МА-ТУ 6-09-5372-87 - порошок светло-бежевого цвета, хорошо растворимый в воде; НТФ - ТУ 6-09-5283-86 - порошок белого цвета, хорошо растворимый в воде; окись цинка - ГОСТ 202-84 - кристаллическое вещество белого цвета; гидроокись натрия - ТУ 6-01-1306-85 - кристаллическое вещество в виде белых пластинок; ЭГ- ГОСТ 10164-75 - прозрачная жидкость; лигносульфонат Na - ТУ 113-03-616-87 - мелкозернистый порошок коричневого цвета и вода.

На чертеже представлен график.

Заявляемый состав готовят следующим образом: (все рецептурные количества компонентов берутся по массе). Готовятся два отдельных раствора.

Раствор 1: В термостойкий сосуд подают рассчитанное количество воды и гидроокись натрия 5,83 - 7,0 мас.%. Перемешивают до полного растворения щелочи. В полученный раствор небольшими порциями при постоянном перемешивании (скорость перемешивания 300-450 об/мин) подают окись цинка 5,42 - 7,12 мас.%. Перемешивание продолжают при нагревании 60-70°С в течение 55-60 минут. В результате получают однородную суспензию. Далее, не прекращая перемешивания и нагревания, постепенно, очень небольшими порциями подают ОЭДФ 16,0-18,03 мас.%, и после 10-15-минутного перемешивания получают близкий к прозрачному светло-коричневый раствор. Как только такой раствор будет получен, нагревание прекращают.

Раствор 2: В сосуд подают этиленгликоль 25-40 мас.% и затем небольшими порциями при постоянном перемешивании подается лигносульфонат натрия 4,17-5,0 мас.%. В результате получают однородный раствор темно-коричневого цвета.

Далее к раствору 1 небольшими порциями подают раствор 2 при интенсивном перемешивании (скорость перемешивания 750-900 об/мин-1). Перемешивание продолжают в течение 1-1,5 ч. Полученная смесь готова для использования по назначению.

В случае приготовления состава, содержащего НТФ, состав готовят следующим образом.

Раствор 1: В термостойкий сосуд подают рассчитанное количество воды и гидроокись натрия 5,83-7,0 мас.%. Перемешивают до полного растворения щелочи. В полученный раствор небольшими порциями при постоянном перемешивании (скорость перемешивания 300-450 об/мин) подают окись цинка 5,42-7,12 мас.%. Перемешивание продолжают при нагревании 60-70°С в течение 55-60 минут. В результате получают однородную суспензию. Далее, не прекращая перемешивания и нагревания, постепенно, очень небольшими порциями подают ОЭДФ 5,0-8,0 мас.% и после 10-15-минутного вводят НТФ 6,67-9,0 мас.%. Перемешивают до получения близкого к прозрачному светло-коричневого раствора. Как только такой раствор будет получен, нагревание прекращают.

Далее к раствору 1 небольшими порциями подают раствор 2 при интенсивном перемешивании (скорость перемешивания 750-900об/ мин). Перемешивание продолжают в течение 1-1,5 ч.

Составы с различным соотношением компонентов представлены в таблице 1,

Таблица 1
Соотношения исходных компонентов в исследованных составах.
СоставСодержание компонентов в составе, масс.%
ОЭДФНТФNaOHZnOЛигносульфонат натрияЭГВода
А16,0-7,06,55,040,025,5
В18,0-6,66,14,639,625,1
С20,0-6,25,74,239,224,7
D18,03-7,07,125,025,037,85
Е6,676,675,835,424,1725,0046,25
F8,08,07,06,55,030,035,50
G5,09,06,56,05,020,048,50

В ходе лабораторных испытаний определяли следующие свойства состава: эффективность ингибирующего действия в модельных водах различного состава, плотность растворов, температура замерзания, скорость коррозии в присутствии предлагаемого состава.

Эффективность ингибирования различных типов солеотложений определяли химическим способом. Для проведения исследований были взяты составы с различным содержанием компонентов. Эффективность ингибирования оценивалась по эффективности их влияния на солеобразование в модельных водах различного состава.

Составы модельных вод, на которых оценивалась эффективность ингибирующего действия составов, приведены в таблице 2. Каждая из приведенных типов вод готовилась путем смешения раствора I с раствором II.

Таблица 2
Составы модельных вод.
ВодаСостав раствора I (на 0,5 л)Состав раствора II (на 0,5 л)
сольmсоли, Гсольmсоли, г
Хлор-кальциевая водаCaCl23,33NaHCO30,28
MgCl2·6H2O0,42
NaCl21,20
Гидрокарбонатно-натриевая водаCaCl20,56NaHCO31,66
MgCl2·6H2O0,42
NaCl22,59
Сульфатная водаNa2SO46,5CaCl213,6
NaCl9,4
MgCl2·6H2O0,62
Бариевая водаNa2SO40,4BaCl2·2H2O0,56
NaCl15NaCl15

При использовании данного метода эффективность действия реагентов определяется по остаточной концентрации солеобразующего иона в обработанном и необработанном реагентом растворе по формуле:

где Ср, Ск и С0 - концентрация солеобразующего иона в растворе с ингибитором, без ингибитора и в исходной воде с начальной концентрацией соответственно.

В данном случае осуществляется нагрев пересыщенного раствора до определенной температуры (85-90°С) с последующей выдержкой в течение 4 часов.

Результаты экспериментов по определению эффективности действия составов для четырех типов модельных вод представлены в таблице 3.

Таблица 3
Эффективность ингибирующего действия приготовленных составов в модельных водах различных типов.
СоставCInh,мг/лЭффективность действия, %
Хлор-кальциевая водаГидрокарбонатно-натриевая водаСульфатная водаБариевая вода
А1096,392,089,880,0
2093,896,794,480,0
5093,893,394,481,8
10087,593,394,458,2
В1095,094,765,369,1
2090,097,491,470,9
5090,097,479,172,7
10080,097,476,063,6
С1097,092,189,863,6
2092,094,791,470,9
5090,097,489,870,9
10075,097,489,870,9
D1096,090,871,450,0
2095,498,578,675,0
5086,098,592,685,0
10084,598,592,685,0
Е1097,083,256,452,0
2096,494,290,975,0
5088,899,694,685,5
10087,599,694,685,5
F1098,5796,6755,2050,0
2098,5798,3393,8375,00
5092,8698,3395,6787,50
10085,7198,3395,6787,50
G1093,7597,4454,5562,50
2087,5098,7281,8275,00
5075,0098,7290,9181,25
10068,7598,7292,7381,25

Как видно из приведенных в таблице данных, приготовленные составы проявляют достаточно высокую эффективность действия в случае всех типов вод, в том числе против образования сульфатных солей.

Таким образом, предлагаемый состав позволяет повысить эффективность предотвращения отложений неорганических солей при добыче нефти за счет возможности его использования для различных типов вод.

Для оценки коррозионной агрессивности состава, связанной с возможностью его агрессивного воздействия на металл дозирующих установок, была проведена проверка агрессивности концентрированных растворов предлагаемого состава и оценка влияния его рабочих дозировок. Использовался 10%-ный раствор ингибитора в дистиллированной воде.

Эксперименты проводились в соответствии со следующими нормативными документами:

- ГОСТ 9.502-82 - Единая система защиты от коррозии и старения. Ингибиторы коррозии металлов для водных систем. Методы коррозионных испытаний;

- ГОСТ 9.514 - 99 - Ингибиторы коррозии металлов для водных систем. Электрохимический метод определения защитной способности.

В качестве исследуемой среды использовалась модель воды характерного для Западной Сибири ионного состава (таблица 4). Парциальное давление углекислого газа составляло 0,1 МПа, концентрация растворенного кислорода - не более 0,05 мг/л.

Скорость коррозии образцов, изготовленных из стали Ст 3, определялась методом поляризационного сопротивления с использованием коррозиметра «Моникор-2», по двухэлектродной схеме. Замеры скорости коррозии проводились каждые 30 мин.

Таблица 4
Ионный состав вод, использованных в экспериментах (мг/л)
Минерализация общаяCl-НСО3-Са2+Mg2+Na+
3029318066520106421310302

Подготовка поверхности электродов датчиков поляризационного сопротивления и рабочих электродов ячеек для снятия поляризационных кривых проводилась в соответствии с требованиями ГОСТ 9.506 - 87 и ГОСТ 9.514 - 99. В ячейку помещалось требуемое количество модели воды, после чего через ячейки осуществлялся барботаж углекислого газа с расходом 15-20 м3/ч в течение 30-40 мин. После этого в ячейки устанавливались датчики поляризационного сопротивления и рабочие электроды. Расход газа уменьшался до 2-4 м3/ч и поддерживался в течение всего эксперимента. После 14-часовой выдержки для стабилизации скорости коррозии в ячейки добавляли необходимое количество реагента. На чертеже представлен график зависимости скорости коррозии от концентрации реагента. Видно, что в присутствии предлагаемого состава наблюдается небольшое снижение скорости коррозии. Это свидетельствует об отсутствии отрицательного влияния реагента на коррозионную стойкость промыслового оборудования.

Результаты исследования физических свойств ингибиторов представлены в таблице 5.

Таблица 5
Некоторые физические свойства составов.
СоставВнешний видрНТзамерз., °Сρ, г/см3Растворимость
АГустая жидкость темно-коричневого цвета9,0-42,5°С1,31Хорошо растворимы в воде, не растворимы в углеводородах
В9,3-42,0°С1,32
С9,4-42,0°С1,32
D9,0-42,0°С1,30
Е9,0-42,0°С1,30
* Температуры замерзания образцов определялась на приборе LIN-TECH по методу ASTM D 97

Таким образом, предлагаемый состав обладает высокоэффективным комплексным ингибирующим действием, препятствующим образованию нерастворимых солевых осадков, не проявляет коррозионной активности и имеет низкую температуру замерзания, что позволяет его использовать в регионах с холодным климатом.

Предложенный состав может быть использован для предотвращения осаждения неорганических солей в скважинах и на скважинном оборудовании, системе сбора и транспорта нефти, а также в нефтяных пластах разрабатываемых с использованием систем заводнения.

1. Состав для ингибирования солеотложений, содержащий оксиэтилендифосфоновую кислоту (ОЭДФ), гидроокись натрия, окись цинка и воду, отличающийся тем, что он дополнительно содержит этиленгликоль (ЭГ) и лигносульфонат натрия при следующем соотношении компонентов, мас.%:

ОЭДФ 16,0-18,03
Гидроокись натрия 5,83-7,0
Окись цинка 5,42-7,12
ЭГ 25,0-40,0
Лигносульфонат натрия 4,17-5,0
Вода остальное

2. Состав для ингибирования солеотложений, содержащий оксиэтилендифосфоновую кислоту (ОЭДФ), гидроокись натрия, окись цинка и воду, отличающийся тем, что он дополнительно содержит этиленгликоль (ЭГ), лигносульфонат натрия, нитрилотриметилфосфоновую кислоту (НТФ) при следующем соотношении компонентов, мас.%:

ОЭДФ 5,0-8,0
Гидроокись натрия 5,83-7,0
Окись цинка 5,42-7,12
ЭГ 25,0-40,0
Лигносульфонат натрия 4,17-5,0
НТФ 6,67-9,0
Вода остальное



 

Похожие патенты:

Изобретение относится к способам предотвращения отложений минеральных солей и может найти применение для защиты от образования накипи поверхностей котлов и оборудования в системах тепло- и пароснабжения, а также оборотных систем водоснабжения.

Изобретение относится к области чистящих веществ, в частности к веществам для удаления накипи, и может быть использовано в виде водных растворов для очистки как теплоэнергетических установок, технологического (пастеризаторов, стерилизаторов и др.) и теплообменного оборудования из нержавеющего, черного и цветного металлов, так и бытовой эмалированной или пластмассовой посуды.

Изобретение относится к области очистки сточных вод от твердых отходов и мусора, в частности к устройствам грабельного типа. .

Изобретение относится к способам предупреждения или облегчения проблем, связанных с осаждением сульфидов металлов в промышленных водных системах, и может быть использовано в том числе в нефтяной и бумажной промышленности.

Изобретение относится к области синтеза антикоррозионных и биологически активных химических соединений, в частности фосфорсодержащих продуктов конденсации тиомочевины и формальдегида, и может быть использовано для защиты оборудования водооборотных систем от коррозии и биообрастаний, а также в составе водосмешиваемых смазочно-охлаждающих жидкостей.

Изобретение относится к технике противокоррозионной защиты углеродистых сталей в водных средах и может быть использовано в различных отраслях промышленности для защиты теплообменной и охлаждающей аппаратуры.

Изобретение относится к составам для обработки охлаждающей воды с целью предотвращения солевых отложений с эффектом коррозии на оборудовании, контактирующем с водой, и может быть использовано для обработки охлаждающей воды водопроводных систем промышленных предприятий.
Изобретение относится к бытовой химии, в частности к химическим препаратам для удаления с внутренних металлических стенок хозяйственно-бытовых приборов, в том числе стиральных машин, посудомоечных машин, парогенераторов и другой накипи - отложений, образующихся при нагревании и кипячении воды вследствие выпадения в осадок содержащихся в ней солей (СаСО3, MgCO3, CaSO4).

Изобретение относится к составам для ингибирования солеотложений и коррозии в системах теплопароснабжения, горячего водоснабжения, оборотных системах водоснабжения.

Изобретение относится к составам для предотвращения карбонатных, сульфатных, железоокисных отложений, а также разрушения этих отложений на тепломассопередающих поверхностях, и может быть использовано в оборотных циклах водоснабжения систем охлаждения, мокрой очистки газов, гидротранспорта и теплоснабжения.
Изобретение относится к синергическим биоцидным композициям и к композициям, растворяющим сульфиды металлов

Изобретение относится к снижению отложений сульфида железа в трубах
Изобретение относится к области водоподготовки, а именно к реагентам и композициям, используемым для предотвращения солеотложений и коррозии в промышленных системах водооборота

Изобретение относится к способам предотвращения минеральных отложений и коррозии и может быть использовано в водоподготовке систем отопления, охлаждения и оборотного водоснабжения

Изобретение относится к биоцидам на основе фосфониевых соединений, внедренных в матричную основу

Изобретение относится к эксплуатации систем оборотного водоснабжения и может быть использовано для защиты оборудования этих систем от коррозии и солеотложения (накипеобразования)

Изобретение относится к технике очистки сточных вод и может быть использовано для перекачки и очистки сточных вод
Изобретение относится к способам предотвращения минеральных отложений, коррозии и биообрастаний и может быть использовано в водоподготовке замкнутых систем отопления, охлаждения, оборотного водоснабжения
Наверх