Способ определения характеристики материала

Изобретение относится к области определения физико-механических свойств материалов. Сущность: проводят пластическое кручение цилиндрических образцов сплошного сечения. Используют два образца одинаковой расчетной длины и разного диаметра d1, d2, причем d2≥0,9d1. Касательное напряжение для сдвига γ при кручении образцов разного диаметра определяют расчетом по формуле. Технический результат: повышение точности определения диаграммы сдвига. 2 ил.

 

Изобретение относится к области определения физико-механических свойств материалов и может применятся в машиностроении, авиастроении, судостроении и др. для изучения сопротивления материалов пластическому деформированию.

Известен способ [1] определения характеристики материала, определяющей диаграмму сдвига в координатах "касательное напряжение (τ) - сдвиг (γ)", включающей пластическое кручение цилиндрического образца сплошного сечения. Основным недостатком данного способа является невысокая точность получения указанной диаграммы из-за приближенного графического способа дифференцирования опытной диаграммы кручения М=М(γ), где М - крутящий момент.

Изобретение направлено на повышение точности определения диаграммы сдвига τ=τ(γ).

Это достигается тем, что дополнительно используют второй образец, одинаковой расчетной длины с первым и диаметром d2, причем d2 ≥ 0,9d1, где d1 - диаметр первого образца, а касательное напряжение для сдвига γ при кручении образцов разного диаметра определяют расчетом по формуле

где М1, М2 - крутящие моменты на образцах соответственно диаметром

d1, d2.

На фиг.1 представлен эскиз образца; на фиг.2 - диаграмма кручения.

Сущность предлагаемого изобретения заключается в следующем. Для испытаний используют дополнительно изготовленный согласно ГОСТ 3565 второй образец расчетной длины с первым l и диаметром d2, причем d2 ≥ 0,9d1, где d1 - диаметр первого образца (см. фиг.1). Оба образца поочередно устанавливают в захваты крутильной машины и пластически закручивают их, фиксируя при этом одновременно крутящий момент М (по силомеру) и абсолютный угол поворота ϕ (град.) головок образца относительно друг друга по лимбу для измерения угловых перемещений.

По полученным опытным данным строят диаграммы кручения, определив предварительно сдвиг на срединной поверхности "условной" трубки с диаметрами d1 и d2 по формуле

На фиг.2 представлены диаграммы кручения: 1 - М11(γ); 2 - М22(γ). Далее по этим диаграммам для соответствующей деформации γ определяют касательное напряжение в поперечном сечении "условной" трубки с площадью поперечного сечения Fср=π(d12-d22)/4 по соотношению

Диаграмма сдвига строится по рассчитанным значениям касательного напряжения τ и сдвига γ.

Таким образом, предлагаемый способ построения диаграммы сдвига является более точным по сравнению со способом аналога, т.к. при оценке касательного напряжения рассматривается тонкостенная "условная" трубка, в поперечном сечении которой можно с высокой точностью считать касательные напряжения постоянными.

Рекомендуется данный способ применять при определении характеристик сопротивления материалов пластическому деформированию, необходимых для проектирования техпроцессов обработки металлов давлением в различных отраслях машиностроения.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. ГОСТ 3565 - Металлы. Метод испытаний на кручение. М., 1980 (прототип).

Способ определения характеристики материала, определяющей диаграмму сдвига, включающий пластическое кручение цилиндрического образца сплошного сечения, отличающийся тем, что дополнительно используют второй образец, одинаковой расчетной длины с первым, и диаметром d2, причем d2≥0,9d1, где d1 - диаметр первого образца, а касательное напряжение для сдвига γ при кручении образцов разного диаметра определяют расчетом по формуле

где M1, M2 - крутящие моменты на образцах соответственно диаметром d1, d2.



 

Похожие патенты:

Изобретение относится к испытательной технике. .

Изобретение относится к испытательной технике, в частности к устройствам для испытания материалов на усталостную прочность при циклическом изгибе и кручении образца.

Изобретение относится к устройствам для определения свойств листовых материалов. .

Изобретение относится к области исследования прочностных характеристик материалов, а именно сопротивления материалов растяжению с кручением. .

Изобретение относится к области оптического приборостроения и может быть использовано при создании био- и химических сенсоров на основе поверхностного плазмонного резонанса (ППР).

Изобретение относится к машиностроению, в частности к испытанию деталей и конструкций машин (в том числе сварных), и может быть использовано при оценке их предела выносливости.

Изобретение относится к области испытательной техники и может быть использовано для испытаний образцов в условиях трехосного нагружения. .

Изобретение относится к испытательной технике

Изобретение относится к испытательной технике и может быть использовано для определения свойств клеевых слоев в многослойных листовых материалах

Изобретение относится к машинам для испытания на усталость и может быть использовано для получения механических характеристик материалов

Изобретение относится к области «Физики материального контактного взаимодействия» четырехлопастного жесткого штампа рабочего наконечника для испытания материальной среды в скважине или массиве методом вращательного среза. Устройство лопастного наконечника снабжено регистратором непрерывной записи крутящего момента Mi от оси наконечника и его угла поворота во времени t, а крутящий момент на оси наконечника или угол его поворота задают возрастающими ступенями, выдерживают на каждой ступени во времени t до стабилизации показателей Mi или , при этом нагрузочное приспособление выполнено в виде плоского диска с навешиваемыми грузами для создания момента Mi на оси лопастного наконечника через червячный редуктор. При вращении лопастного наконечника червячным редуктором через колонну штанг с отключающим от вращения кулачковым устройством замеряют после записи крутящий момент М0 - на вращение колонны штанг в массиве при отключенном лопастном наконечнике и моменты (Mj+М0) - на оси наконечника со штангами при их вращении в массиве среды: (Мс+Мо) - на пределе пропорциональных деформаций грунтовой упруго-вязко-пластичной среды под лопастями наконечника, (Mmax+М0) - на срез среды лопастями наконечника, (Муст+М0) - на сопротивление вращению срезанного лопастями объема среды. Строят графики или и снимают показания стабилизированных значений крутящего момента Мкр1, Мб и соответствующих углов и поворота лопастей наконечника при начальном (первом) критическом давлении под лопастью и при преодолении влияния гравитационного давления рб. Для грунта рассчитывают: 1) удельное сцепление ; 2) угол внутреннего трения ; 3) удельный вес , где , ; 4) гравитационное давление при крутящем моменте на оси лопастного наконечника ; 5) коэффициент общего бокового давления и коэффициент общей относительной поперечной деформации среды νcmp и νн; 6) модуль упругости среды по зависимости Е.Н. Хрусталева и 7) модуль общей деформации упруго-вязко-пластичной грунтовой среды по зависимости Е.Н. Хрусталева (кГ/см2), где постоянная , , а для торфов рассчитывают: ; ; . Технический результат - повышение точности и информативности исследования среды вращательным срезом с получением истинных прочностных, а также деформационных характеристик среды. 3 н. и 8 з.п. ф-лы, 12 ил., 3 табл.

Изобретение относится к устройствам для исследования свойств материалов путем приложения к ним механических усилий при корреляции параметров затухающего колебательного процесса, возбуждаемого в исследуемом материале с подвижностью определяемых структурно-кинетических элементов, приводящих к локальным изменениям упругих характеристик и, в целом, к изменению прочностных свойств в широком температурно-частотном интервале. Измерительный преобразователь содержит колебательную систему с крутильным маятником, установленным на игольчатой опоре, устройство для возбуждения крутильных колебаний маятника, печь нагрева испытуемого образца, подвижную и неподвижную платформы со средствами закрепления испытуемого образца и систему съема и обработки информации. При этом колебательная система выполнена опирающейся в центре масс игольной опорой на опорную пластину, жестко закрепленную на подвижной платформе, установленной посредством опор качения на неподвижной платформе. Крутильный маятник выполнен в виде крепежного кольца с коромыслом, плечи которого прикреплены к крепежному кольцу с двух диаметрально противоположных сторон и ориентированы перпендикулярно продольной оси испытуемого образца, а также груза, прикрепленного к плечам коромысла, позволяющего изменять период колебаний колебательного процесса. Технический результат заключается в повышении точности измерений, а также в увеличении срока службы преобразователя. 3 з.п. ф-лы, 3 ил.

Изобретение относится к области испытательной техники, а именно к установкам для испытаний образцов и фрагментов пространственных коробчатых (сварных, клеесварных, клепанных или клееклепанных) конструкций. Устройство содержит корпус с размещенным в нем приводом и жестко закрепленную на нем металлическую раму с основанием, захватами для испытуемого образца и тензодатчиками. Один из захватов жестко закреплен на раме, а второй установлен на основании посредством двух пневмоцилиндров с возможностью обеспечения приложения вертикальной нагрузки и крутящего момента на испытуемый образец. Тензодатчики размещены на подвижном захвате и испытуемом образце. Технический результат: обеспечение испытания пространственных коробчатых конструкций, изготовленных с использованием сварки, клеесварки, клепки или клееклепки, позволяющие проводить оценку прочностных характеристик конструкции в различных зонах. 2 ил.

Изобретение относится к испытательной технике, к устройствам для испытаний материалов на сдвиг и кручение и может быть использовано в машиностроении. Устройство содержит нагружающий и опорный стержни, снабженные тензодатчиками, между которыми размещен образец. Устройство снабжено тремя последовательно перекрещивающимися под приблизительно прямым углом рычагами, в каждом из которых по центру перекрестия выполнено отверстие некруглой формы, причем в двух из них расположены противоположные концы опытного образца, а в третьем - средняя его часть. Концы образцов и средняя часть выполнены одинаковой формы и входят в отверстия рычагов с минимальными зазорами, при этом рычаги установлены так, что продольные оси симметрии рычагов по концам образца установлены в одной плоскости, а продольная ось симметрии среднего рычага расположена приблизительно перпендикулярно этой плоскости. Один конец каждого рычага контактирует с нагружающим стержнем, а другой - с опорным. Сущность способа: производят замер деформаций в падающем, отраженном и прошедшем импульсе деформаций на всем временном промежутке деформационного воздействия с помощью тензодатчиков, расположенных на стержнях, а затем деформацию сдвига в образце, максимальное касательное напряжение для образца и скорость деформации определяют по формулам. Технический результат: расширение возможностей устройства. 3 н. и 2 з.п. ф-лы, 7 ил.

Изобретение относится к испытательной технике, в частности к определению параметра лопасти на кручение. Устройство состоит из жесткой рамы, укрепленной в пол, на которой установлена неподвижная опора для комлевой части лопасти со сменными приспособлениями и перемещаемая опора по направляющим рамы, со сменными ложементами. При этом сменное приспособление в виде вращающейся опоры комля установлено на неподвижной опоре с возможностью закручивания через датчик крутящего момента нагружающим устройством, выполненным в виде рычага с винтовой парой. Хвостовая часть лопасти установлена в сменные ложементы, установленные под размер необходимого сечения лопасти, на базовую плоскость комля установлен электронный уровень. Технический результат заключается в снижении трудоемкости измерений при повышении их точности. 2 ил.
Наверх