Способ гидрокавитационного эрозионного разрушения наростов и отложений, а также горной породы в водной среде и устройство для его осуществления

Группа изобретений относится к области геологии и строительства и может быть использована при разрушении природных и искусственных наростов и отложений, а также при бурении. Способ включает подачу на вход гидрокавитационного устройства воды под давлением, активизацию внутри этого устройства гидрокавитационного процесса с помощью находящегося там тела кавитации и направление кавитирующей струи воды с выхода этого устройства на разрушаемую поверхность. На входе устройства обеспечивают давление от 90 до 200 атмосфер. Искусственно заполняют водой пространство перед разрушаемой поверхностью на высоту от 300 мм водяного столба. Расстояние от среза выхода устройства до разрушаемой поверхности обеспечивают в пределах от 20 до 1500 мм. Формируют гидрокавитационный процесс максимальной мощности, обеспечивая вибрационную суперкавитацию с локальным нагреванием среды, ионизацией воды и кавитационной эрозией разрушаемой поверхности, направляя водный поток внутри гидрокавитационного устройства двумя различными путями, первым - через двухступенчатые камеры с разным поперечным сечением этих ступеней, а вторым - через полое тело кавитации в форме конфузора, закрепленное в этой камере. Обе указанных водных струи смешивают в сопле на выходе устройства. Определяют существование вибрационной суперкавитации. Устройство содержит пустотелый открытый с двух сторон корпус, тело кавитации, закрепленное в центре него продольно, и пустотелое сопло. Корпус внутри представляет собой двухступенчатую цилиндрическую камеру, диаметр первой ступени которой является входом устройства и равен не более 0,5 диаметра второй ступени, а тело кавитации является пустотелым конфузором с сужением его канала и внешней формы с волнообразной поверхностью по направлению движения струи от входа устройства. Отношения наименьших диаметров сопла и конфузора равно 1,25-2,0. Обеспечивает увеличение мощности кавитационной струи в 2-3 раза. 2 н. и 3 з.п. ф-лы, 4 ил.

 

Способ и устройство относятся к областям геологии, добычи, энергетики и строительства и могут быть использованы в технологиях разрушения природных и искусственных наростов и отложений, а также - в технологиях бурения скважин и т.п.

Известны способ и устройство, используемые для размола волокнистых примесей в суспензиях с помощью активизации в них процесса кавитации (патент №2134611 на изобретение "Кавитационный смеситель" по МПК 6 B01F 5/00, Бюл. №23 от 20.08.1999 г.).

Способ включает в себя подачу под давлением на вход кавитационного смесителя суспензии и пара и активизацию внутри него кавитационного процесса.

Устройство содержит корпус и тело кавитации (в известном устройстве - кавитатор).

Известные способ и устройство ориентированы на использование кавитации для размельчения волокон и примесей в пищевой промышленности и не могут быть использованы без дополнительного изобретательства в технологиях разрушения природных и искусственных преград.

Наиболее близкими к заявляемому изобретению являются способ и устройство, описанные в изобретении "Способ кавитирующей струи жидкости" (патент №2060344 по МПК 6 Е21В 7/18, Бюл. №14 от 20.05.1996 г.).

Известный способ включает в себя подачу под давлением в устройство кавитации пара, активизацию в этом устройстве процесса кавитации и выброс на обрабатываемую поверхность кавитирующей струи воды.

Известное устройство содержит пустотелый открытый с двух сторон корпус и тело кавитации (в известном устройстве - центральное тело), закрепленное внутри корпуса.

Известные способ и устройство также не могут быть эффективно использованы для разрушения природных и искусственных препятствий, т.к. ориентированы на микроскопическую обработку поверхностей, не позволяют развивать мощный кавитационный процесс и не содержат достаточных сведений о геометрических и других характеристиках тела кавитации и внутренней камеры корпуса, которые позволяли бы получить мощную кавитацию.

Целью заявленных способа и устройства является устранение указанных выше недостатков, точнее - получение максимальной мощности кавитационной струи воды за счет оптимизации геометрической формы и соотношений отдельных частей тела кавитации и корпуса устройства, что, в конечном счете, обеспечивает возможность разрушения твердых поверхностей при относительно небольших энергозатратах.

Указанная цель достигается тем, что способ гидрокавитационного эрозионного разрушения наростов и отложений, а также горной породы в водной среде, включающий подачу на вход гидрокавитационного устройства воды под давлением, активизацию внутри этого устройства гидрокавитационного процесса с помощью находящегося там тела кавитации и направление кавитирующей струи воды с выхода этого устройства на разрушаемую поверхность, характеризуется тем, что на входе устройства обеспечивают давление от 90 до 200 атмосфер, на первоначальном этапе искусственно заполняют водой пространство перед разрушаемой поверхностью на высоту от 300 мм водяного столба, затем расстояние от среза выхода устройства до разрушаемой поверхности обеспечивают в пределах от 20 до 1500 мм, причем формируют гидрокавитационный процесс максимальной мощности и представляющий собой вибрационную суперкавитацию с локальным нагреванием среды, ионизацией воды и кавитационной эрозией разрушаемой поверхности, что обеспечивают за счет искусственного формирования вынужденных колебаний водного потока, для чего его направляют внутри гидрокавитационного устройства двумя различными путями, первым - через двухступенчатую камеру с разным поперечным сечением этих ступеней, а вторым - через полое тело кавитации в форме конфузора, закрепленное в этой камере, затем обе указанных водных струи смешивают в сопле на выходе устройства, при этом существование вибрационной суперкавитации определяют согласно формуле:

(Pn/Ро)·(lo/do)≤0,8,

где: Pn/Po - число кавитации, определяемое как отношение гидростатического давления вокруг истекающей водной струи на разрушаемую поверхность (Pn) к полному давлению, на выходе гидрокавитационного устройства (Ро);

lo - расстояние от среза выхода устройства до поверхности разрушения;

do - наименьший диаметр сечения гидрокавитационного устройства.

Устройство гидрокавитационного эрозионного разрушения наростов и отложений, а также горной породы в водной среде, содержащее пустотелый открытый с двух сторон корпус и тело кавитации, закрепленное в центре него продольно, дополнительно содержит пустотелое сопло, корпус внутри представляет собой двухступенчатую цилиндрическую камеру, у которой диаметр первой ступени, являющейся входом устройства, равен 0,5 диаметра второй ступени или меньше этого, а тело кавитации является пустотелым конфузором с сужением его канала и внешней формы с волнообразной поверхностью по направлению движения струи от входа устройства, причем сопло является съемным и своим меньшим диаметром ввинчивается внутрь второй ступени корпуса, проникая в нее на половину ее длины, а своим наружным срезом образует выход устройства, хвостовик тела кавитации начинается на входе устройства, а его наконечник незначительно заходит в сопло, при этом отношения наименьших диаметров сопла и конфузора равно 1,25-2,0.

Технический результат заявленных способа и устройства состоит в увеличении мощности кавитационной струи в 2-3 раза, а также, как следствие, в существенном снижении стоимости достижения цели, обусловленной снижением требуемого гидравлического давления до 90-200 атмосфер вместо 500-1000 атмосфер при слабой кавитации.

На фиг.1, 2, 3 и 4 представлены соответственно эскизы гидрокавитационного эрозионного устройства со съемным соплом в виде диффузора, съемное сопло в виде конфузора, съемное сопло в виде долота и ручного устройства с соплом в виде конфузора.

Устройство содержит корпус 1 с первой ступенью 2 и второй ступенью 3, тело 4 кавитации с хвостовиком 5, наконечником 6, волнообразной поверхностью 7 и каналом 8, съемное сопло 9 в виде диффузора с наименьшим диаметром 10, расширением 11 и резьбой 12, рукав 13 для подачи воды с сочленяющим разъемом 14 и запорным механизмом 15.

Для пояснений также показаны оптимальное расстояние 16 до разрушаемой преграды 17.

Крепление, например, с помощью спиц тела 4 кавитации внутри корпуса 1 не показано в силу не принципиальности этого в рамках заявленного технического решения. По той же причине не показаны направляющие и удерживающие средства, ориентирующие устройство в пространстве.

Диаметр первой ступени 2 камеры корпуса 1 равен 0,5 диаметра второй ступени 3, а тело 4 кавитации является пустотелым конфузором с сужением его канала 8 и волнообразной поверхностью 7 по направлению движения струи. Отношение наименьших диаметров диффузора 9 и конфузора 4 (соответственно 10 и 6 - диаметр наконечника) равно 1,25-2,0.

Способ осуществляется следующим образом.

Пусть ручное гидрокавитационное устройство сочленено через разъем 14 с рукавом 13 для подачи воды (фиг.1). На вход этого устройства подают воду под давлением 90-200 атмосфер через рукав 13, открыв запорный механизм 15.

Если разрушаемая поверхность 17 находится не в воде, то оператор, держащий в руках гидрокавитационное устройство, на первоначальном этапе искусственно заполняет пространство перед поверхностью 17, придвинув вначале почти вплотную к этой поверхности край диффузора 9, а затем устанавливает оптимальное расстояние 16 в пределах 20-1500 мм, которое определяют в процессе работы при наиболее интенсивной эрозии разрушаемой поверхности 17.

Гидрокавитационный процесс развивается благодаря тому, что воду внутри устройства направляют двумя различными путями: через первую 2 и вторую 3 ступени корпуса 1 и через канал 8 тела 4 кавитации, сужающегося от хвостовика 5 к наконечнику 6, а затем смешивают обе струи воды возле наконечника 6 в зоне наименьшего диаметра 10 диффузора 9, где образуют каверну - область резко повышенного давления воды. Возникает вибрационная суперкавитация с локальным нагреванием среды и ионизацией воды. При этом в каверне интенсивно растет количество паровых пузырей, уносимых из диффузора 9 вибрирующей струей к поверхности 17, на которой возникает кавитационная эрозия - разрушение твердого вещества.

Авторами экспериментально установлено, что существование вибрационной суперкавитации определяют согласно формуле:

(Pn/Ро)·(lo/do)≤0,8.

где: Pn/Po - число кавитации, определяемое как отношение гидростатического давления вокруг истекающей водной струи на разрушаемую поверхность (Pn) к полному давлению, на выходе гидрокавитационного устройства (Ро);

lo - расстояние от среза выхода устройства до поверхности разрушения;

do - наименьший диаметр сечения гидрокавитационного устройства.

Максимальную интенсивность вибрационного кавитационного эрозионного разрушения поверхности определяют из формулы:

ΔG/Δτ=const·Pn/Po-[const-1/2(lo/do)2]exp,

где ΔG - эрозионный износ

Δτ - продолжительность эрозионного износа.

Поддерживают максимальное значение струйного потока на выходе гидрокавитационного устройства (Fmax) согласно формуле:

Fmax=200·S·ρ·(Po-Pn)·k·sinγ,

где:

S - площадь поперечного сечения струйного потока на выходе гидрокавитационного устройства,

ρ - плотность воды,

γ - угол наклона истекающего струйного потока к разрушаемой поверхности,

k - опытный коэффициент, зависящий от характеристики разрушаемой поверхности и других параметров, связанных с рабочей зоной возле разрушаемой поверхности.

Устройство работает следующим образом.

Выше одновременно с описанием осуществления способа была рассмотрена работа ручного гидрокавитационного устройства с использованием сопла 9 в виде диффузора (фиг.1). При этом перед началом работы диффузорное сопло 9 было ввинчено в корпус 1 с целью использования его вне водной среды для искусственного ее образования. Это сопло также более эффективно при работе, в том числе в водной среде, с мягкими материалами (известняк и т.п.), т.к. разрушает более широкую площадь одновременно.

Для разрушения твердых поверхностей (камни и т.п.) в качестве сопла 9 используют конфузор (фиг.2), который ввинчивают перед работой в корпус 1.

Для разрушения особо твердых поверхностей (бетон и т.п.) при необходимости дополнительных ударных воздействий в качестве сопла 9 используют долото с отверстием для вывода кавитационной струи (фиг.2), которое ввинчивают перед работой в корпус 1.

1. Способ гидрокавитационного эрозионного разрушения наростов и отложений, а также горной породы в водной среде, включающий подачу на вход гидрокавитационного устройства воды под давлением, активизацию внутри этого устройства гидрокавитационного процесса с помощью находящегося там тела кавитации и направление кавитирующей струи воды с выхода этого устройства на разрушаемую поверхность, отличающийся тем, что на входе устройства обеспечивают давление от 90 до 200 атмосфер, на первоначальном этапе искусственно заполняют водой пространство перед разрушаемой поверхностью на высоту от 300 мм водяного столба, затем расстояние от среза выхода устройства до разрушаемой поверхности обеспечивают в пределах от 20 до 1500 мм, причем формируют гидрокавитационный процесс максимальной мощности и представляющий собой вибрационную суперкавитацию с локальным нагреванием среды, ионизацией воды и кавитационной эрозией разрушаемой поверхности, что обеспечивают за счет искусственного формирования вынужденных колебаний водного потока, для чего его направляют внутри гидрокавитационного устройства двумя различными путями, первым - через двухступенчатые камеры с разным поперечным сечением этих ступеней, а вторым - через полое тело кавитации в форме конфузора, закрепленное в этой камере, затем обе указанных водных струи смешивают в сопле на выходе устройства, при этом существование вибрационной суперкавитации определяют согласно формуле

(Pn/Po)·(lo/do)≤0,8,

где Pn/Po - число кавитации, определяемое как отношение гидростатического давления вокруг истекающей водной струи на разрушаемую поверхность (Pn) к полному давлению, на выходе гидрокавитационного устройства (Ро);

lo - расстояние от среза выхода устройства до поверхности разрушения;

do - наименьший диаметр сечения гидрокавитационного устройства.

2. Устройство гидрокавитационного эрозионного разрушения наростов и отложений, а также горной породы в водной среде, содержащее пустотелый, открытый с двух сторон корпус и тело кавитации, закрепленное в центре него продольно, отличающееся тем, что устройство дополнительно содержит пустотелое сопло, корпус внутри представляет собой двухступенчатую цилиндрическую камеру, у которой диаметр первой ступени, являющейся входом устройства, равен 0,5 диаметра второй ступени или меньше этого, а тело кавитации является пустотелым конфузором с сужением его канала и внешней формы с волнообразной поверхностью по направлению движения струи от входа устройства, причем сопло является съемным и своим меньшим диаметром ввинчивается внутрь второй ступени корпуса, проникая в нее на половину ее длины, а своим наружным срезом образует выход устройства, хвостовик тела кавитации начинается на входе устройства, а его наконечник незначительно заходит в сопло, при этом отношения наименьших диаметров сопла и конфузора равно 1,25-2,0.

3. Устройство по п.2, отличающееся тем, что съемное сопло представляет собой диффузор с расширением наружу.

4. Устройство по п.2, отличающееся тем, что съемное сопло представляет собой конфузор с сужением наружу.

5. Устройство по п.2, отличающееся тем, что оно представляет собой ручной прибор с рукояткой.



 

Похожие патенты:

Изобретение относится к строительной промышленности, например, для забивки сверхтяжелых железобетонных и металлических свай-оболочек при строительстве льдоустойчивых стационарных платформ и, в том числе, в подводных условиях.

Изобретение относится к горной промышленности и может быть использовано при проходке горных выработок, бурении скважин, в процессах рудоподготовки, в геофизике при разведке и зондировании недр.

Изобретение относится к горному делу и может быть использовано для повышения эффективности эксплуатационных скважин, отделения горной породы от породного массива, излучения упругих волн.

Изобретение относится к гидравлическим устройствам ударного действия. .

Изобретение относится к области машиностроения, а именно к пневматическим машинам ударного действия. .

Изобретение относится к горному делу и может быть использовано для отбойки блоков от массива, проходки дорог в гористой местности, добычи строительного камня и кристаллического сырья.

Изобретение относится к горному делу и может быть использовано для образования направленной трещины гидравлическим разрывом горной породы через скважину с целью расслоения труднообрушаемой кровли, дегазации угольного пласта, управления напряженно-деформированным состоянием породного массива в окрестности горной выработки.

Изобретение относится к строительным и горным машинам ударного действия. .

Изобретение относится к строительным и горным машинам ударного действия. .

Изобретение относится к горной промышленности и предназначено для образования скважин и выработок в геологических структурах осадочных горных пород воздействием на разрушаемую среду комплексными рабочими агентами, формируемыми в виде струй, воздействующих на забой, стенки скважины, выработки.

Изобретение относится к технологии проходки скважин и образования выработок в осадочных горных породах и мерзлых грунтах путем разрушения минеральной среды формируемыми струями рабочего агента.

Изобретение относится к области гидравлического бурения и представляет самопродвигающуюся вперед систему бурения, содержащую буровое устройство, имеющее, по крайней мере, одно направляющее сопло для режущей жидкости, средство, расположенное на буровом устройстве для обеспечения движения вперед бурового устройства, имеющее, по меньшей мере, одно направленное наружу от продольной оси сопло, обратного направления, угол наклона которого составляет от 0 до 30° относительно указанной продольной оси, бурильную колонну, сформированную из гибкого шланга.

Изобретение относится к области электричества и может быть использовано в устройствах для восстановления и повышения дебита водоносных пластов и скважинных фильтров, изготовления набивных свай, а также бескернового сооружения скважин, очистки гидравлических коммуникаций.

Изобретение относится к горнодобывающей отрасли, в частности к устройствам для интенсификации скважинной добычи жидких полезных ископаемых, например - пресных и минеральных вод.

Изобретение относится к способу гидроизоляции объемных участков грунта, в частности захоронений отходов, свалок, трубопроводов или т.п., или сооружаемых строительных котлованов с применением уплотняющих материалов, при котором с помощью полностью управляемого в отношении проходки способа бурения от поверхности вне объемного участка грунта прокладывают с опережением по меньшей мере одну скважину под объемным участком грунта, при этом в окружающую скважину область грунта нагнетают уплотняющее средство.

Изобретение относится к буровой технике, а именно к устройствам для шароструйного бурения скважин. .

Изобретение относится к буровой технике, а именно к шароструйным снарядам для бурения скважин. .
Изобретение относится к обработке поверхностей и может быть использовано, в частности, при очистке фасадов, вестибюлей подъездов и лестничных клеток, других внутренних помещений и инженерных сооружений и архитектурных деталей строящихся, реконструируемых и ремонтируемых зданий от различного вида загрязнений и высолов.
Наверх