Паротурбинная установка

Изобретение относится к энергомашиностроению. Паротурбинная установка, включающая парогенератор, подсоединенную к нему посредством трубопровода свежего пара паровую турбину с цилиндрами высокого и среднего давления, причем последние имеют роторы и статоры, выполненные с полостями для охлаждения их высокотемпературных участков, а также паро-паровой теплообменник, соединенный входом по греющей среде с трубопроводом свежего пара, а выходом ее - с полостями для охлаждения цилиндра высокого давления, при этом паро-паровой теплообменник входом нагреваемой среды соединен с паропроводом холодного промперегрева на участке за обратным клапаном, а выходом ее - с паропроводом горячего промперегрева до стопорного клапана, кроме того, в паро-паровом теплообменнике каналы нагреваемой среды объединены между собой коллектором, соединенным с полостями для охлаждения высокотемпературых участков цилиндра среднего давления. Изобретение позволяет получать пар необходимых параметров для охлаждения термонапряженных узлов турбины на всех эксплуатационных режимах без постоянного дополнительного регулирования его расхода. 1 ил.

 

Изобретение относится к энергомашиностроению и может быть использовано в турбинах, имеющих внутреннее уплотнение ротора и работающих в блоках с прямоточными и барабанными котлами.

Известна паротурбинная установка, содержащая парогенератор со встроенным сепаратором и турбину с двустенным корпусом, центральным подводом пара и внутренним уплотнением ротора (Рыжков В.К. и др. Паровая турбина К-1200-240-3 ЛМЗ. - Теплоэнергетика, 1976, №5, с.4).

Недостатком известной установки является то, что ротор в зоне промежуточного уплотнения омывается смесью свежего пара и пара, поступающего из камеры регулирующей ступени, что снижает экономичность турбоустановки, так как этот пар не работает в первом потоке цилиндра высокого давления (ЦВД). Кроме того, для уменьшения скорости развития термоусталостных трещин на поверхности ротора, возникающих на переходных режимах, увеличивают продолжительность пусковых неэкономичных режимов, что ухудшает маневренность паротурбинной установки и снижает ее экономические показатели.

Известна также паротурбинная установка, включающая парогенератор, подсоединенную к нему посредством трубопровода свежего пара паровую турбину с цилиндрами высокого и среднего давления, причем последние имеют роторы и статоры, выполненные с полостями для охлаждения их высокотемпературных участков, а также паро-паровой теплообменник, соединенный входом по греющей среде с трубопроводом свежего пара, а выходом ее - с полостями для охлаждения цилиндра высокого давления. Входом нагреваемой среды паро-паровой теплообменник соединен с одним из паровых отборов цилиндра высокого давления, а выходом ее - с полостями цилиндра среднего давления паровой турбины (RU 2053377, МПК F01К 17/04, опубл. 27.01.96).

Недостатком этой схемы является прямая зависимость требуемого расхода пара из отбора ЦВД на паро-паровой теплообменник (ППТО) от расхода и требуемых параметров (особенно температуры) пара, подаваемого на охлаждение ЦВД. При этом весь расход нагреваемой среды теплообменника не работает в части ступеней ЦВД и расход пара из линии горячего промперегрева, подводимый для получения нужной, более высокой чем на выходе из ППТО температуры охлаждающего пара на цилиндр среднего давления (ЦСД), не работает в части ступеней ЦСД.

Заявляемое техническое решение позволяет получать пар необходимых параметров для охлаждения термонапряженных узлов турбины на всех эксплуатационных режимах без постоянного дополнительного регулирования его расхода. В предлагаемой схеме нагреваемая среда проходит всю проточную часть ЦВД, так как отбор выполняется из линии холодного промперегрева. Расход ее определяется требуемым расходом пара нужных параметров на охлаждение ЦВД и нагрев в ППТО может осуществляться до температуры, близкой к температуре пара горячего промперегрева, так как отбор охлаждающего пара на ЦСД производится из коллектора, объединяющего каналы нагреваемой среды в том месте, где будет достигнута ее нужная температура, поэтому подвод пара из линии горячего промперегрева не нужен. Требуемый расход охлаждающего пара как на ЦВД, так и на ЦСД ограничивается дроссельными шайбами, имеющими байпасы с вентилями для первоначальной настройки системы охлаждения на номинальном режиме, с последующей работой системы охлаждения в автоматическом режиме на всех нагрузках, включая пуски и остановы.

Предложена паротурбинная установка, включающая парогенератор, подсоединенную к нему посредством трубопровода свежего пара паровую турбину с цилиндрами высокого и среднего давления, причем последние имеют роторы и статоры, выполненные с полостями, используемыми для охлаждения их высокотемпературных участков, а также паро-паровой теплообменник, соединенный входом по греющей среде с трубопроводом свежего пара, а выходом ее - с полостями для охлаждения цилиндра высокого давления, при этом паро-паровой теплообменник входом нагреваемой среды соединен с паропроводом холодного промперегрева на участке за обратным клапаном, а выходом ее - с паропроводом горячего промперегрева до стопорного клапана, кроме того, в паро-паровом теплообменнике каналы нагреваемой среды объединены между собой коллектором, соединенным с полостями для охлаждения высокотемпературых участков цилиндра среднего давления.

На чертеже представлена паротурбинная установка.

Паротурбинная установка включает парогенератор 1 и паровую турбину с цилиндрами высокого (ЦВД) 2 и среднего (ЦСД) 3 давления. Турбина соединена с парогенератором паропроводом 4 свежего пара и имеет паро-паровой теплообменник (ППТО) 5, соединенный входом по греющей среде паропроводом 6 с трубопроводом свежего пара 4 за блоком регулирующих клапанов 7 ЦВД 2, а выходом ее - паропроводом 8 с полостями для охлаждения 9 ЦВД 2. Входом нагреваемой среды ППТО соединен трубопроводом 10 с паропроводом холодного промперегрева 11 за обратным клапаном 12 по ходу пара, а выходом ее - трубопроводом 13 с паропроводом горячего промперегрева 14 до стопорного клапана 15 ЦСД 3. Коллектор 16 объединяет каналы нагреваемой среды между собой и соединен паропроводом 17 с полостями для охлаждения высокотемпературных участков 18 ЦСД 3. На линиях подачи охлаждающего пара в цилиндры установлены дроссельные шайбы 19 и 20, имеющие байпасы с вентилями 21 и 22.

Паротурбинная установка работает следующим образом.

При работе паротурбинной установки на всех эксплуатационных режимах, включая пусковые, часть свежего пара из паропровода 4 отбирается после блока регулирующих клапанов 7 в паро-паровой теплообменник 5, в котором происходит снижение его температуры за счет отвода тепла паром, подаваемым из линии холодного промперегрева 11. Охлажденный свежий пар по паропроводу 8 подается на охлаждение термонапряженных участков ЦВД 2, снижая их температуру. Пар из линии холодного промперегрева 11, взятый по ходу пара за обратным клапаном 12, после нагрева в теплообменнике 5 сбрасывается в линию горячего промперегрева 14 до стопорного клапана 15 ЦСД 3. Пар на охлаждение термонапряженных участков ЦСД 3 подается по паропроводу 17 из коллектора 16, объединяющего каналы нагреваемой среды между собой. Подбор места установки коллектора 16 по ходу нагреваемой среды, а также диаметров дроссельных шайб 19 и 20, установленных на паропроводах охлаждающего пара 8 и 17 и имеющих байпасы с вентилями 21 и 22, позволяет на всех режимах автоматически иметь требуемые расходы охлаждающего пара определенных параметров.

Паротурбинная установка, включающая парогенератор, подсоединенную к нему посредством трубопровода свежего пара паровую турбину с цилиндрами высокого и среднего давления, причем последние имеют роторы и статоры, выполненные с полостями для охлаждения их высокотемпературных участков, а также паро-паровой теплообменник, соединенный входом по греющей среде с трубопроводом свежего пара, а выходом ее - с полостями для охлаждения цилиндра высокого давления, отличающаяся тем, что паро-паровой теплообменник входом нагреваемой среды соединен с паропроводом холодного промперегрева на участке за обратным клапаном, а выходом ее - с паропроводом горячего промперегрева до стопорного клапана, при этом в паро-паровом теплообменнике каналы нагреваемой среды объединены между собой коллектором, соединенным с полостями для охлаждения высокотемпературных участков цилиндра среднего давления.



 

Похожие патенты:

Изобретение относится к области энергетики и холодильной техники, в частности к способу повышения выработки электроэнергии. .

Изобретение относится к турбостроению и может быть использовано для охлаждения высокотемпературных роторов паровых турбин. .

Изобретение относится к энергомашиностроению и может быть использовано в турбинах, имеющих внутреннее уплотнение ротора и работающих в блоках с прямоточными и барабанными котлами.

Изобретение относится к энергосудостроению для преобразования тепловой энергии в электрическую в судовой энергетической установке глубоководных аппаратов. .

Изобретение относится к теплоэнергетике , может быть использовано на паротурбинных блоках с вспомогательными конденсационными турбинами и позволяет повысить экономичность энергоблока.

Изобретение относится к теплоэнергетике и позволяет повысить экономичность установки путем использования теплоты конденсации пара и теплоты конденсата вспомогательных турбин в системе регенерации главной турбины при всех режимах ее работы.

Изобретение относится к теплоэнергетике и позволяет повысить экономичность и маневренность работы теплоэлектроцентрали при получении пиковой (дополнительной) мощности.

Изобретение относится к энергетике и позволяет повысить экономичность выработки электроэнергии паротурбинной теплофикационной установкой. .

Изобретение относится к области теплоэнергетики

Изобретение относится к энергетике. Способ конденсации отработавшего пара турбины включает в себя подачу части отработавшего пара в первичный конденсатор, охлаждаемый оборотной водой, в котором он конденсируется, после которого первичный конденсат по конденсатопроводу рабочим насосом подается в сопла мультиступенчатого эжектора, причем другая часть отработавшего пара подается в приемную камеру первой ступени мультиступенчатого эжектора, причем парожидкостная смесь после мультиступенчатого эжектора поступает во вторичный конденсатор, охлаждаемый воздухом, в котором происходит конденсация всего пара и удаление несконденсированных газов. Также представлено устройство для реализации способа. Изобретение позволяет повысить эффективность конденсации отработавшего пара турбины. 2 н. п. ф-лы, 4 ил.

Изобретение относится к области теплоэнергетики и может быть использовано на тепловых электростанциях и котельных установках, работающих на природном газе для повышения их экономичности. Теплоэнергетическая установка содержит котел, водоподготовительную установку с деаэратором, к которому подключены патрубки исходной и деаэрированной воды, подвода рабочей среды и отвода выпара. Деаэратор включен патрубками подвода рабочей среды и отвода выпара в газопровод перед горелками котла. Изобретение позволяет повысить экономичность теплоэнергетической установки. 1 ил.

Изобретение относится к области теплоэнергетики и может быть использовано на тепловых электростанциях и котельных установках, работающих на природном газе для повышения их экономичности. Теплоэнергетическая установка, содержит котел, водоподготовительную установку с декарбонизатором, к которому подключены патрубки исходной и декарбонизированной воды, подвода и отвода рабочей среды. Декарбонизатор включен патрубками подвода и отвода рабочей среды в газопровод перед горелками котла. Изобретение позволяет повысить эффективность теплоэнергетической установки. 1 ил.

Изобретение относится к станционной энергетике, конкретнее к энергосбережению при эксплуатации котлов электростанций, содержащих паротурбинные установки (ПТУ). В способе глубокой утилизации осуществляют подачу конденсата ПТУ в водогазовый теплообменник (ВГТ) на выходе из котла и нагрев конденсата за счет тепла продуктов сгорания (ПС), продукты сгорания в (ВГТ) охлаждают до температуры ниже точки росы на (5-10)°C, полученный конденсат (ПС) собирают, подвергают очистке по известной технологии и направляют в конденсатную линию и далее последовательно в подогреватель конденсата, деаэратор и котел. Для реализации способа система глубокой утилизации (ГУ) включает размещенный под водогазовым теплообменником (ВГТ) резервуар для слива конденсата (ПС), баки сбора и запаса конденсата, дренажный и конденсатный насосы, а также участок обработки конденсата, соединенный с конденсатной линией станции. Кроме экономии тепла (топлива) данное решение обеспечивает снижение эмиссии токсичных оксидов NOХ и CO2 за счет подавления водяными парами, уменьшения расхода топлива, получение дополнительной воды, которая может использоваться для подпитки котла и других нужд, устраняет или сводит к минимуму конденсацию в газовом тракте и дымовой трубе, улучшают условия их службы, отпадает необходимость в рециркуляции дымовых газов для предотвращения конденсации. 2 н.п. ф-лы, 4 ил.

Изобретение относится к области теплоэнергетики. Вакуумная деаэрационная установка добавочной питательной воды тепловой электрической станции содержит вакуумный деаэратор с трубопроводом деаэрированной добавочной питательной воды, подключенным к трубопроводу основного конденсата турбины, с трубопроводами исходной воды и греющего агента, в которые включены подогреватели исходной воды и греющего агента с трубопроводами греющей среды, трубопроводом выпара. Изобретение позволяет повысить экономичность работы вакуумной деаэрационной установки добавочной питательной воды тепловой электрической станции и снизить затраты электрической энергии на собственные нужды путем обеспечения технологически необходимого температурного режима деаэрации за счет использования в качестве греющей среды для подогревателей вакуумной деаэрационной установки недорогого теплоносителя с достаточными для деаэрации параметрами. 1 ил.

Изобретение относится к области энергетики. Устройство получения электроэнергии, содержащее воздуховод, первый тепловой коллектор, нагревательные элементы, накопитель-радиатор, турбогенератор, второй тепловой коллектор, блок управления, аккумулятор, электроконвертор, при этом первый выход первого теплового коллектора соединен с нагревательными элементами, выход которых соединен с накопителем-радиатором, выход блока управления соединен с первым входом турбогенератора, первый выход которого является первым выходом устройства, выход аккумулятора соединен с входом электроконвертора, выход которого является вторым выходом устройства. Устройство дополнительно содержит вихревой разделитель теплоносителя, насос, выпрямительно-зарядное устройство. Первый вход устройства соединен с первым входом воздуховода и вторым входом турбогенератора, второй вход устройства соединен с вихревым разделителем теплоносителя, первый выход которого соединен с входом первого теплового коллектора и вторым входом воздуховода, второй выход первого теплового коллектора соединен с первым входом насоса, второй вход которого соединен с выходом блока управления, а выход соединен с входом второго теплового коллектора, первый выход которого соединен с первым выходом воздуховода, вторым выходом вихревого разделителя теплоносителя и является третьим выходом устройства, второй выход второго теплового коллектора соединен с вторым выходом турбогенератора, третьим выходом первого теплового коллектора и входом блока управления, первый выход турбогенератора соединен с входом выпрямительно-зарядного устройства, выход которого соединен с входом аккумулятора, второй выход воздуховода соединен с выходом накопителя-радиатора и является четвертым выходом устройства. Изобретение направлено на получение электроэнергии из тепловой энергии контура охлаждения градирни при использовании градирни в качестве воздуховода. 1 ил.

Изобретение относится к электроэнергетике на основе возобновляемых источников энергоресурсов и местных видов топлива, в частности биомассы, децентрализованному электроснабжению, а также к переработке и утилизации твердых органических отходов. Способ предполагает производство электроэнергии по двухстадийной технологической схеме с газификацией сырья в реакторе-газификаторе прямого процесса паровоздушной газификации в плотном слое, в частности цилиндрическом наклонном вращающемся реакторе-газификаторе в режиме фильтрационного горения со сверхадиабатическим разогревом, и последующим непосредственным сжиганием получаемого горячего топливного газа и преобразованием тепловой энергии получаемого пара в электроэнергию посредством тепловой (паровой) машины и электрогенератора. Изобретение предусматривает рекуперацию «сбросной» теплоты отработавшего пара посредством его конденсации в замкнутом контуре циркуляции рабочего тела (воды/органического теплоносителя) тепловой (паровой) машины по двухступенчатой схеме воздушного охлаждения, включающей непрерывную межступенчатую комбинированную конвективную воздушно-калориферную и кондуктивную (контактную) сушку исходного сырья в конденсационно-сушильном блоке, использованный при этом воздух в необходимом объеме подают в реактор-газификатор в качестве газифицирующего агента. Осуществление изобретения предполагается посредством введения в состав устройства конденсационно-сушильного блока, подключенного к выходу тепловой (паровой) машины для отработавшего пара и конструктивно представляющего собой двухступенчатый воздушный конденсатор пара, содержащий паропровод в виде последовательно соединенных узлов - модуля 1-й ступени конденсации, коллектора перепуска пара и отвода конденсата с интегрированным (встроенным) вращающимся сушильным барабаном, модуля 2-й ступени конденсации. Предлагается использование различных типов тепловой (паровой) машины - паровой турбины, паровой винтовой машины, парового поршневого двигателя, турбины органического цикла. Изобретение позволяет повысить электрический КПД и расширить спектр используемого дешевого низкосортного сырья в части некондиционной, в том числе по содержанию влаги, топливной биомассы, включая утилизируемые некондиционные твердые городские (бытовые) отходы, при минимизации вредного влияния на окружающую среду и обеспечении автономности процесса производства электроэнергии. 2 н. и 8 з.п. ф-лы, 9 ил., 1 табл.

Изобретение относится к электроэнергетике на основе возобновляемых источников энергоресурсов и местных видов топлива, в частности биомассы, децентрализованному электроснабжению, а также к переработке и утилизации твердых органических, в том числе бытовых отходов. Способ предлагает производство электроэнергии по двухстадийной технологической схеме с газификацией сырья в реакторе-газификаторе прямого процесса паровоздушной газификации в плотном слое, в частности, цилиндрическом наклонном вращающемся реакторе-газификаторе в режиме фильтрационного горения со сверхадиабатическим разогревом, и последующим непосредственным сжиганием получаемого топливного газа и преобразованием тепловой энергии получаемого пара в электроэнергию посредством тепловой (паровой) машины конденсационного типа и электрогенератора. Изобретение предусматривает рекуперацию «сбросной» теплоты посредством конденсации отработавшего пара в замкнутом контуре циркуляции рабочего тела (воды/органического теплоносителя) посредством двухступенчатой схемы воздушного охлаждения с промежуточной (межступенчатой) конвективной воздушно-калориферной сушкой исходного сырья путем принудительной циркуляции атмосферного воздуха. При осуществлении изобретения предлагается использование двухступенчатого воздушного конденсатора и сушильного аппарата, например, барабанного типа, а также различных типов тепловой (паровой) машины (паровой турбины, паровой винтовой машины, парового поршневого двигателя, турбины органического цикла). Изобретение позволяет повысить электрический КПД и расширить спектр используемого дешевого низкосортного сырья в части некондиционной, в том числе по содержанию влаги, топливной биомассы, включая утилизируемые некондиционные твердые городские (бытовые) отходы, при минимизации вредного влияния на окружающую среду и обеспечении автономности процесса производства электроэнергии. 2 н. и 7 з.п. ф-лы, 6 ил., 1 табл.

Изобретение может быть использовано в энергетике, водоочистке, топливной промышленности. Система для производства электроэнергии и очищенной воды включает в себя: i) оборудование для получения электроэнергии, преобразованной из солнечного излучения; ii) оборудование для получения электроэнергии из биотоплива; iii) оборудование для очистки воды; iv) оборудование для орошения и выращивания сельскохозяйственных культур; v) оборудование для производства биотоплива, в которой по меньшей мере один выходной продукт от оборудования для производства электроэнергии питает оборудование для очистки воды, которая используется в оборудовании для орошения и выращивания сельскохозяйственных культур, по крайней мере некоторые из которых или их остатки используются в оборудовании для производства биотоплива, служащего сырьем оборудования для производства электроэнергии из биотоплива, а компост для выращивания сельскохозяйственных культур получен из побочного продукта от производства биотоплива. Способ производства электроэнергии и очищенной воды включает стадию обеспечения системы для производства электроэнергии и очищенной воды и стадию производства электричества и очищенной воды. Изобретение не требует привлечения поступающих извне энергоносителей, позволяет увеличить производительность системы, снизить уровень содержания углерода в атмосферных выбросах, улучшить качество грунтовой воды и регенерация земель. 5 н. и 17 з.п. ф-лы, 6 ил.
Наверх