Способ определения скорости звука в моно- и поликристаллах

Изобретение относится к области испытания физических свойств материалов и предназначено для определения скорости звука в моно- и поликристаллах. Технический результат изобретения - расширение функциональных возможностей, снижение трудоемкости. Сущность изобретения - предварительно определяют период кристаллической решетки для моно- и поликристалла рентгеноструктурным методом, а затем по формуле:

.

где Vзв - скорость звука в моно- и поликристалле;

m - атомная масса химического элемента;

е - заряд электрона;

r - расстояние между ближайшими атомами - соседями, которое зависит от типа и периода кристаллической решетки а0;

π=3,14;

ε0 - электрическая постоянная, определяют скорость звука. 1 табл.

 

Изобретение относится к способам определения скорости звука в моно- и поликристаллах.

Известен способ определения скорости звука, по которому, в частности, в твердых телах возбуждают бегущую акустическую волну, направляют световой пучок и по разности фаз судят о скорости волны (Патент РФ №2221224, М.Кл. G01H 5/00, 10.01.2004).

Известен способ измерения скорости звука в твердых материалах, по которому, в частности, излучают звук в иммерсионную среду и образец и измеряют время распространения ультразвука (Авторское свидетельство СССР №1456792, М.Кл. G01H 5/00, 07.02.1989).

Известен способ определения скорости звука в среде, по которому, в частности, генерируют ударные звуковые волны, определяют время движения волн между преобразователями и вычисляют среднее значение скорости движения ударных волн на отрезке расположения преобразователей по формуле (Патент РФ №2130597, М.Кл. G01L 23/10, 20.05.1999).

Недостатком способов являются ограниченные функциональные возможности.

Наиболее близким по достигаемому результату является способ определения продольной и поперечной звуковых волн в плоскопараллельных объектах, по которому, в частности, излучают гармонические ультразвуковые колебания, измеряют параметры колебаний и определяют скорость продольных и поперечных звуковых волн по формуле (Патент РФ №2034241, М.Кл. G01H 5/00, 30.04.1995).

Недостатком является трудоемкость способа и ограниченные функциональные возможности.

Технический результат изобретения - снижение трудоемкости способа, возможность прогнозирования скорости звука в моно- и поликристаллах путем расчета по формуле, а также расширение функциональных возможностей за счет определения скорости звука в моно- и поликристаллах предельно малых объемов на уровне нанометровых размеров.

Технический результат изобретения достигается за счет того, что в способе определения скорости звука в моно- и поликристаллах, по которому вычисляют скорость продольных звуковых волн по формуле, в отличие от прототипа что предварительно определяют период кристаллической решетки для моно- и поликристалла рентгеноструктурным методом, а затем по формуле:

где Vзв - скорость звука в моно- и поликристалле;

m - атомная масса химического элемента;

е - заряд электрона;

r - расстояние между ближайшими атомами-соседями, которое

зависит от типа и периода кристаллической решетки а0π=3,14;

ε0- электрическая постоянная, определяют скорость звука.

Кроме того, период кристаллической решетки можно определить по справочным данным (Кристаллография и дефекты кристаллической решетки. Учебник для вузов / Новиков И.И., Розин К.М. - M.: Металлургия, 1990, 336 с.).

Пример конкретной реализации способа

Для рентгеноструктурного анализа изготавливаются образцы. Монолитные образцы в форме шлифов изготавливают из исследуемого материала обычными механическими способами и перед съемкой подвергают электролитической полировке для снятия наклепа. Плоские шлифы подготавливают для съемки с помощью электролитического травления для снятия деформированного слоя. При съемке на просвет образцы должны электролитически утоньшаться до тонкой фольги.

Для определения периодов кристаллической решетки необходимо измерить межплоскостные расстояния, проиндицировать дифракционные отражения и, зная связь между межплоскостным расстоянием, индексами отражающих плоскостей и периодами решетки, рассчитать последние (С.С.Горелик, Л.Н.Расторгуев, Ю.А.Скаков. Рентгенографический и электроннооптический анализ. - М.: Металлургия, 1970, 366 с.).

Методами прецизионного определения периода кристаллической решетки могут служить следующие:

- асимметричная съемка с расчетом по последним линиям;

- метод съемки на больших расстояниях в широком расходящемся пучке;

- метод съемки с независимым эталоном;

- безэталонный метод при обратной съемке и др.

Выбор того или иного метода определения периода решетки связан с расположением линий на рентгенограмме и симметрией решетки исследуемого материала (Н.Н.Качанов, Л.И.Миркин. Рентгеноструктурный анализ. М.: Машгиз, 1960, 216 с.).

Расстояние между ближайшими атомами-соседями определяется в соответствии с правилами кристаллографии [Лахтин Ю.М., Леонтьев В.П. Материаловедение: Учебник для ВУЗов. - 3-е изд. - М.: Машиностроение, 1990. - 528 с.]. В частности, для меди с гранецентрированной кристаллической решеткой

где а0 - период кристаллической решетки.

Например, скорость звука в моно- и поликристаллах меди Cu определяется как

где е=1,6·10-19 Кл - заряд электрона;

π=3,14;

ε0=8,85·10-12 Кл2/Нм2 - электрическая постоянная;

m=63,546 - атомная масса меди;

1,66·10-27 кг - атомная единица массы.

Таблица
Результаты некоторых расчетов сведены в таблицу.
Символ элемента Величина скорости звука, м/с
расчетная экспериментальная погрешность %
Cu 4138 3710 11,5
Ni 4354 4785 9
Ag 2345 2640 11,1
Au 2209 2030 8,8

Из таблицы видно, что расчетная величина скорости звука для меди Cu составляет 4138 м/с, а экспериментальное значение - 3170 м/с. Экспериментальные значения использованы из справочника (Таблицы физических величин. Справочник. Под ред. акад. И.К.Кикоина. M.: Атомиздат, 1976, 1008 с.).

Таким образом, заявляемое изобретение позволяет снизить трудоемкость за счет расчета по формуле, в свою очередь, определение скорости звука для моно- и поликристаллов предельно малых объемов на уровне нанометровых размеров расширяет функциональные возможности способа.

Способ определения скорости звука в моно- и поликристаллах, по которому вычисляют скорость продольных звуковых волн по формуле, отличающийся тем, что предварительно определяют период кристаллической решетки для моно- и поликристалла рентгеноструктурным методом, а затем по формуле:

где Vзв - скорость звука в моно- и поликристалле;
m - атомная масса химического элемента;
е - заряд электрона;
r - расстояние между ближайшими атомами-соседями, которое зависит от типа и периода кристаллической решетки а0;
π=3,14;
ε0 - электрическая постоянная,
определяют скорость звука.



 

Похожие патенты:

Изобретение относится к устройствам для акустических измерений и может быть использовано для измерения вертикального распределения скорости звука в жидких средах.

Изобретение относится к области импульсной акустической измерительной техники и может быть использовано для измерения скорости звука в неоднородных средах, преимущественно для томографии.

Изобретение относится к гидроакустике, а именно к устройствам для измерения скорости звука в текущих жидкостях и в воде, и может быть размещено как на стационарных объектах, так и на подвижных объектах, движущихся с большими скоростями.

Изобретение относится к устройствам для акустических измерений. .

Изобретение относится к технике неразрушающего контроля и может быть использовано для определения скорости ультразвука в углеродных нитях и жгутах и других функционально зависящих от скорости параметров, например динамического модуля упругости.

Изобретение относится к технике регистрации быстропротекающих однократных процессов (быстрое горение, взрыв, высокоскоростное взаимодействие материалов, распространение ударных волн и т.п.).

Изобретение относится к акустическим измерениям и может быть использовано для определения скорости звука в жидкостях и воде при исследованиях Мирового океана на движущихся объектах, а также в текущих жидкостях и сыпучих средах.

Изобретение относится к средствам контроля времени распространения ультразвуковых сигналов, которые распространяются между двумя датчиками. .

Изобретение относится к измерительной технике и может использоваться в самых разных областях науки и техники для определения скорости звука в прозрачных жидкостях и твердых телах.

Изобретение относится к акустическим измерениям и предназначено для использования в ультразвуковой технике

Изобретение относится к области акустических измерений и может быть использовано для измерения вертикального распределения скорости звука в естественных водоемах

Использование: изобретение относится к области гидроакустики и может быть применено при формировании оценки полного профиля вертикального распределения скорости звука (ВРСЗ) по его измеренному в некотором диапазоне глубин фрагменту. Сущность: в способе осуществляется достраивание полного профиля ВРСЗ на основе текущего замера ВРСЗ с привлечением априорной информации из базы данных многолетних измерений ВРСЗ, представленной в статистической форме. Для измеренного фрагмента ВРСЗ находится максимально правдоподобное априорное ВРСЗ из базы данных, после чего происходит достраивание точек ВРСЗ для глубин, лежащих выше и ниже границ замера ВРСЗ. При этом производится коррекция априорного профиля с учетом текущей глубины района плавания и, в случае необходимости, линейная интерполяция реперных точек на интересующие глубины. Технический результат: повышение достоверности гидрологических моделей, повышение точности решения прогнозных задач гидроакустики - расчета дальности действия гидроакустических систем, расчета оптимальной мощности излучения сонаров и т.п. 6 з.п. ф-лы, 1 ил.

Изобретение относится к области гидроакустической метрологии и может быть использовано для построения современных многолучевых эхолотов. Производят ненаправленное излучение зондирующего сигнала в сторону дна, прием отраженного сигнала веером статических характеристик направленности (ХН), измерение скорости звука на глубине их излучения, сигнал, отраженный от дна, принимают двумя парциальными ХН под углами меньше, чем 40 градусов от нормали, а их оси разнесены на углы порядка 2 градуса, измеряют углы направленности выбранных парциальных ХН, измеряют времена прихода сигналов, отраженных от дна, в выбранные парциальные ХН, определяют отношение времен распространения принятых сигналов, производят последовательный перебор возможных значений скорости звука на глубине у дна в диапазоне 30% от скорости звука, измеренной на глубине излучения с шагом 0,5 м/сек, а за оценку скорости звука на глубине принимают то значение, которое обеспечивает минимум разности. Техническим результатом является повышение точности измерения глубины многолучевым эхолотом. 1 ил.

Изобретения относятся к области гидроакустической метрологии. Процедура измерения скорости звука времяпролетным способом предполагает задание базы измерения с помощью специальной меры длины, выполненной в виде прямоугольного параллелепипеда с двумя полированными звукоотражающими поверхностями. Прямоугольный параллелепипед закрепляют вертикально на юстируемом основании рабочего измерительного объема, ограниченного крышкой в виде плоскопараллельной пластины. Напротив звукоотражающего торца прямоугольного параллелепипеда и звукоотражающего основания устанавливают приемно-передающие пьезопреобразователи, подключенные к генератору электрических импульсов и измерителю временных интервалов. Пьезопреобразователи закрепляют на наружной поверхности плоскопараллельной пластины, а юстировочные элементы располагают на основании, связанном с верхней частью устройства беличьим колесом. Процедура измерения предполагает многократное переотражение звуковых импульсов. Оценка скорости звука производится по интервалам времени от начала формирования звуковых импульсов, создаваемых формирователем, до момента приема звуковых импульсов с учетом поправки на допускаемую недоюстировку. Технический результат - повышение точности измерения скорости звука. 2 н.п. ф-лы, 4 ил.

Изобретение относится к области гидроакустических измерений и может быть использовано для измерения вертикального распределения скорости звука в естественных водоемах. Сущность: производят зондирование акустическим импульсным сигналом одиночного относительно сильного естественного акустического рассеивателя, находящегося в водном объеме, ограниченным характеристиками направленности акустических излучателя-приемника и двух приемников, оси характеристик направленности которых пересекаются на одном горизонте с осью характеристики направленности акустического излучателя-приемника. Последовательно изменяют углы наклона характеристик направленности первого и второго акустического приемников, которые расположены на фиксированных расстояниях от излучателя-приемника на одном горизонте с ним. Измеряют времена прихода принятых сигналов, определяют по их значениям, значению скорости звука на горизонте акустических источника и приемников, известным расстояниям между ними значения скорости звука в водоеме на заданных горизонтах. Излучают или монохроматический импульсный акустический сигнал малой длительности, или сложный импульсный акустический сигнал с гиперболической частотной модуляцией, при использовании которой времена прихода принятых сигналов определяют по временному положению максимумов взаимнокорреляционных функций излучаемого и принятых сигналов. Технический результат - повышение точности и глубины измерения скорости звука на заданных горизонтах в естественных водоемах дистанционным акустическим способом на ходу носителя аппаратуры. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области измерения параметров срабатывания средств инициирования детонации зарядов взрывчатых веществ при взрывных работах, а именно подрывных электродетонаторов (ЭД), имеющих в составе непервичный капсюль-детонатор (КД) на основе бризантных взрывчатых веществ (БВВ) и стандартный электровоспламенитель (ЭВ) с жестким или эластичным креплением мостика накаливания. Устройство для измерения параметров срабатывания непервичного капсюля-детонатора в подрывном электродетонаторе состоит из муфеля для подрыва электродетонатора на свинцовой пластине, узла задействования мостика накаливания постоянным или импульсным токами, измерителя времени срабатывания с запуском начала отсчета времени от момента задействования, ионизационного датчика фиксации детонации, ионизационного датчика фиксации момента срабатывания электровоспламенителя, узла регистрации сигналов от датчиков и выдачи сигнала на измеритель времени срабатывания. Приведенная конструкция устройства позволяет полностью обеспечить комплексное измерение всех параметров срабатывания КД как непервичного, так и первичного типов в составе подрывного ЭД, при этом впервые в рамках одного испытания. 2 з.п. ф-лы, 1 ил.,1 табл.

Настоящее изобретение относится к области гидроакустики и предназначено для определения скорости звука по трассе. Способ заключается в следующем. Неподвижный источник излучает через постоянные промежутки времени Т постоянные по длительности зондирующие сигналы. Сигналы распространяются в водной среде и поступают на приемное устройство, движущееся в направлении противоположном направлению распространения зондирующих сигналов. Далее определяют скорость движения приемника V, время приема первого зондирующего сигнала t1, а также время приема N-го зондирующего сигнала tN и вычисляют скорость звука по формуле: С=(N-1)VT/{t1-tN+(N-1)Т}. Техническим результатом изобретения является обеспечение возможности измерения скорости звука по трассе, полученное при приеме нескольких зондирующих сигналов с использованием одного гидроакустического канала измерения и без учета точности измерения дистанции. 1 ил.

Изобретение относится к гидроакустическим измерениям и может быть использовано для измерения вертикального распределения скорости звука в море с передачей измерительной информации на судно по гидроакустическому каналу связи. Сущность: после сброса гидроакустического зонда в морскую воду специальная схема включает его автономный источник питания, по команде микроконтроллера импульсный генератор через переключатель ударно возбуждает видеоимпульсом цилиндрический пьезоэлектрический преобразователь по толщине стенки. Принятые радиоимпульсы, соответствующие многократно отраженным от поверхности заполненной водой внутренней полости цилиндрического пьезоэлемента акустическим импульсам, через переключатель, усилитель и аналого-цифровой преобразователь поступают в микроконтроллер, который определяет времена их прихода, вычисляет по ним измеренные значения скорости звука в воде и запоминает их. Микроконтроллер формирует соответствующий этим значениям цифровой электрический радиосигнал, который подается через усилитель мощности и переключатель на цилиндрический пьезоэлектрический преобразователь - гидроакустический излучатель зонда, радиально колеблющийся и передающий цифровую измерительную информацию на судно через водную среду. Технический результат состоит в упрощении по сравнению с аналогичными гидроакустическими зондами для измерения скорости звука в море конструкции зонда и уменьшении его стоимости. 1 ил.
Наверх