Запаянная нейтронная трубка

Изобретение относится к малогабаритным запаянным нейтронным трубкам и может быть использовано при разработке генераторов нейтронов для исследования геофизических и промысловых скважин. В заявленной нейтронной трубке анод выполнен в виде заземленного металлического корпуса, поверхность анода расположена непосредственно на внутренней поверхности цилиндрического постоянного магнита, а катод и антикатод изолированы от заземленного металлического корпуса. Техническим результатом изобретения является увеличение выхода нейтронов без увеличения габаритов трубки, увеличение диаметра анода и напряженности магнитного поля у поверхности анода, увеличение времени жизни электронов в разряде в скрещенных магнитном и электрическом полях, увеличение тока ионов и, соответственно, увеличение потока нейтронов запаянной нейтронной трубки. 1 ил.

 

Изобретение относится к малогабаритным запаянным нейтронным трубкам и может быть использовано при разработке генераторов нейтронов для исследования геофизических и промысловых скважин.

Известна запаянная нейтронная трубка, содержащая полый цилиндрический изолятор, на одном конце которого герметично закреплена мишень, на другом конце герметично закреплен металлический корпус с размещенными в нем катодом, антикатодом, анодом и цилиндрическим постоянным магнитом, создающим между катодами аксиальное магнитное поле. Беспалов Д.Ф. Малогабаритная ускорительная трубка УНГ-1 для скважинных генераторов нейтронов. Геофизическая аппаратура, N 30, 1966, с.97-108. Патент США N 3546512, НКИ: 313-61. МПК: G21G 4/02, 1970.

Недостатком аналога является низкая величина тока ионов на мишени, низкая величина потока нейтронов из-за потери свойств постоянного магнита в результате перегрева, так как магнит изолирован от корпуса и теплосъем с него затруднен.

Известна запаянная нейтронная трубка, содержащая полый цилиндрический изолятор, на одном конце которого герметично закреплена мишень, а на другом конце герметично закреплен расположенный в полости цилиндрического постоянного магнита металлический корпус с размещенным в нем катодом, антикатодом и анодом. Патент США № 4282440, МПК: G21G 4/02, 1981. Прототип.

Недостатком прототипа является низкая эффективность ионизации газа в источнике ионов и низкая величина потока нейтронов из-за низкой величины магнитной индукции на внутренней поверхности анода, так как анод находится на расстоянии от поверхности магнита.

Постоянный магнит в прототипе размещен на расстоянии от анода, поскольку они находятся под разными потенциалами. Это не позволяет увеличить напряженность магнитного поля на поверхности анода. Кроме того, в прототипе исключена возможность увеличения диаметра анода без увеличения габаритов всей запаянной нейтронной трубки.

Техническим результатом изобретения является увеличение выхода нейтронов без увеличения габаритов трубки, увеличение диаметра анода и напряженности магнитного поля у поверхности анода, увеличение времени жизни электронов в разряде в скрещенных магнитном и электрическом полях, увеличение тока ионов и, соответственно, увеличение потока нейтронов запаянной нейтронной трубки.

Технический результат достигается тем, что в запаянной нейтронной трубке, содержащей анод, полый цилиндрический изолятор, на одном конце которого герметично закреплена мишень, на другом конце герметично закреплен расположенный в полости цилиндрического магнита металлический корпус с размещенными в нем катодом и антикатодом, анод выполнен в виде заземленного металлического корпуса, поверхность анода расположена непосредственно на внутренней поверхности цилиндрического постоянного магнита, а катод и антикатод изолированы от заземленного металлического корпуса.

Сущность изобретения поясняется чертежом, на котором схематично представлена запаянная нейтронная трубка, где:

1 - полый цилиндрический изолятор, 2 - мишень, герметично закрепленная на конце изолятора, 3 - анод, выполненный в виде заземленного металлического корпуса, 4 - катод, изолированный от корпуса, 5 - антикатод, 6 - цилиндрический постоянный магнит.

Выход нейтронов зависит от тока ионов. Ток ионов зависит от эффективности ионизации газа в разряде. Эффективность ионизации для разрядов в скрещенных электрическом и магнитном полях растет с ростом напряженности магнитного поля на внутренней поверхности анода и с ростом диаметра анода.

Запаянная нейтронная трубка работает следующим образом.

В объеме между катодом 4, антикатодом 5 и анодом 3 зажигают разряд в скрещенных электрическом и магнитном полях.

Для этого на анод 3 подают напряжение относительно катода 4 и антикатода 5.

Ионы дейтерия ускоряются к мишени 2 запаянной нейтронной трубки. Ускоренные ионы взаимодействуют с атомами трития, находящимися в мишени 2. В результате реакции 3Н(d,n)4He образуются нейтроны.

Диаметр анода 3 за счет исключения промежутка между анодом 3 и корпусом увеличен до диаметра корпуса. Кроме того, в этой конструкции увеличена напряженность магнитного поля на поверхности анода 3 за счет того, что поверхность анода непосредственно соприкасается с внутренней поверхностью цилиндрического постоянного магнита 6. При этом диаметр нейтронной трубки не возрастает и не требуется увеличивать размеры постоянного магнита 6.

Запаянная нейтронная трубка, содержащая анод, полый цилиндрический изолятор, на одном конце которого герметично закреплена мишень, на другом конце герметично закреплен расположенный в полости цилиндрического магнита металлический корпус с размещенными в нем катодом и антикатодом, отличающаяся тем, что анод выполнен в виде заземленного металлического корпуса, поверхность анода расположена непосредственно на внутренней поверхности цилиндрического постоянного магнита, а катод и антикатод изолированы от заземленного металлического корпуса.



 

Похожие патенты:
Изобретение относится к ядерной технике и может быть использовано при изготовлении источников ионизирующего излучения на основе радиоактивных элементов. .

Изобретение относится к средствам для лучевой терапии, в частности к запаянным нейтронным трубкам, и может найти применение для внутриполостного и внутритканевого терапевтического облучения онкологических больных.

Изобретение относится к области технической физики. .
Изобретение относится к области ядерной физики, а именно к получению нейтронов в результате взаимодействия ускоренных ионов дейтерия с ядрами трития, в частности к области изготовления дейтерий-тритиевых газонаполненных нейтронных трубок, которые предназначены для генерации потоков нейтронов.

Изобретение относится к изготовлению газонаполненных нейтронных трубок для генерации потоков нейтронов. .

Изобретение относится к устройствам для генерации импульсных потоков быстрых нейтронов, в частности к малогабаритным отпаянным ускорительным трубкам, и может быть использовано в ускорительной технике или в геофизическом приборостроении, например, в импульсных генераторах нейтронов народно-хозяйственного назначения, предназначенных для исследования скважин методами импульсного нейтронного каротажа.

Изобретение относится к ядерной медицине и может быть использовано при терапии онкологических заболеваний. .

Изобретение относится к области технической физики, в частности к ускорителям легких ионов, и может быть использовано в качестве генератора нейтронов. .

Изобретение относится к области технической физики, в частности к получению нейтронов, и может быть использовано в ряде приложений. .
Изобретение относится к области ядерной физики, а именно к получению нейтронов в результате взаимодействия ускоренных ионов дейтерия с ядрами трития, и может быть использовано в ряде приложений.

Изобретение относится к анализу объектов радиационными методами с помощью нейтронного излучения

Изобретение относится к разведке и обнаружению скрытых масс или объектов с использованием радиоактивности, конкретно к разработке схем питания импульсных нейтронных генераторов

Изобретение относится к способам изготовления газонаполненных нейтронных трубок и формированию нейтронного потока

Изобретение относится к области физического приборостроения, в частности к источникам нейтронного излучения, и предназначено для проведения геофизических исследований скважин импульсными нейтронными методами

Изобретение относится к области физического приборостроения, в частности к источникам нейтронного излучения, предназначенным для проведения геофизических исследований нефтяных, газовых и рудных скважин

Изобретение относится к области электротехники, к источникам нейтронного и рентгеновского излучения и других подобных устройств, в частности к экранировке аппаратов и их деталей

Изобретение относится к нейтронной технике, к средствам формирования потоков нейтронов высокой плотности и может быть использовано в экспериментальной нейтронной физике, ядерной геофизике, при анализе материалов, в том числе нейтронно-активационном анализе, и в других областях ядерной техники и технологии

Изобретение относится к области физического приборостроения, в частности к источникам нейтронного излучения, и предназначено для применения в аппаратуре элементного анализа вещества на основе нейтронно-радиационных методов

Изобретение относится к области создания ускоренных ионов в нейтронных трубках, применяемых в медицине, системах идентификации ядерных материалов, устройствах каротажа нефтегазовых скважин и в других областях. В заявленном изобретении в части объема герметичной колбы трубки генерируют плазму с помощью высокочастотного безэлектродного электрического разряда, осуществляют вытягивание ионов из зоны электрического разряда и их ускорение по направлению к располагаемой вне зоны разряда нейтронопроизводящей мишени. При этом используют безэлектродный высокочастотный разряд емкостного типа, а ускоряющее ионы электрическое поле создают приложением к плазме высокого положительного потенциала. Заявленное устройство содержит герметичную колбу, нейтронопроизводящую мишень в мишенной полости, а также расположенную вне колбы систему возбуждения высокочастотного безэлектродного электрического разряда для генерации плазмы в плазменной полости. Система возбуждения разряда содержит примыкающие к стенкам колбы электроды, возбуждающие разряд емкостного типа, в плазменную полость дополнительно введен потенциальный высоковольтный электрод, а заземленный экран-экстрактор с центральным отверстием герметично изолирован от объема колбы. Технический результат заключается в увеличении ресурса нейтронной трубки. 2 н.п.ф-лы, 1 ил.

Изобретение относится к устройствам для генерации импульсных потоков быстрых нейтронов, в частности к портативным нейтронным генераторам с запаянными нейтронными трубками, и может быть использовано в низковольтной ускорительной технике, геофизическом приборостроении, в частности, при разработке импульсных генераторов нейтронов для исследования нефтегазовых и урановых скважин методом импульсного нейтронного каротажа. Заявленный скважинный генератор нейтронов содержит импульсную нейтронную трубку и детектор, чувствительный элемент которого выполнен из кристалла алмаза, в качестве детектора используется детектор быстрых нейтронов, чувствительный элемент детектора быстрых нейтронов закреплен на внешней стороне герметичной оболочки блока импульсной нейтронной трубки в непосредственной близости от мишени импульсной нейтронной трубки. При этом выходы чувствительного элемента подсоединены через двухпроводную линию к двум резисторам нагрузки, резисторы нагрузки соединены соответственно с источниками положительного и отрицательного напряжения смещения и с входами усилителя-преобразователя разностного сигнала. Техническим результатом является исключение погрешности измерения импульсного нейтронного выхода скважинного генератора нейтронов, обусловленной импульсными электромагнитными помехами и влиянием сопутствующего рентгеновского излучения. 1 ил.
Наверх