Полупроводниковый фотоэлектрический генератор и способ его изготовления

Изобретение относится к электронной технике, а именно к приборам, преобразующим энергию электромагнитного излучения в электрическую, и технологии их изготовления, в частности к полупроводниковым фотоэлектрическим генераторам. Полупроводниковый фотоэлектрический генератор содержит подложку, полупроводниковые слои, просветляющее покрытие, металлические контакты. При этом согласно изобретению на лицевой стороне генератора расположено множество осажденных слоев, образующих диодные планарные n+-р-р+ или р+-n-n+, или n-р структуры, соединенные последовательно по направлению распространения излучения. Один или два линейных размера каждой диодной структуры не превышает диффузионной длины неосновных носителей заряда в базовой области. Толщина диодной структуры в направлении распространения излучения обратно пропорциональны максимальному коэффициенту поглощения излучения в полупроводниковом материале. Также предложен способ изготовления фотоэлектрического генератора описанной выше конструкции. Изобретение обеспечивает увеличение выходного напряжения и повышение эффективности преобразования концентрированного излучения. 2 н. и 3 з.п. ф-лы, 2 ил.

 

Изобретение относится к электронной технике, а именно к приборам, преобразующим энергию электромагнитного излучения в электрическую, и технологии их изготовления, в частности к полупроводниковым фотоэлектрическим генераторам.

Известен фотоэлектрический генератор (патент РФ №2265915, 2005, МПК H01L 31/18), в котором на полупроводниковой подложке расположены эпитаксиальные слои n и р-типа, а запирающий эффект обратносмещенных переходов устранен путем импульсного пробоя.

Недостатком указанного преобразователя является недостаточно высокий КПД при однократной интенсивности освещения, невозможность их использования в стандартной технологии фотоэлектрических модулей на основе планарных фотогенераторов.

В качестве прототипа принята конструкция фотоэлектрического генератора (Васильев A.M., Ландсман А.П. Полупроводниковые фотопреобразователи. - М.: Советское радио, 1971), содержащего подложку, полупроводниковые слои р-типа и n-типа, просветляющее покрытие, металлические контакты.

Недостатком указанного преобразователя является низкое напряжение, низкая эффективность преобразования концентрированного излучения.

Задачей предлагаемого изобретения является увеличение выходного напряжения и повышение эффективности преобразования концентрированного излучения.

Вышеуказанный результат достигается тем, что полупроводниковый фотоэлектрический генератор, содержащий подложку, полупроводниковые слои р-типа и n-типа, просветляющее покрытие, металлические контакты, состоит из расположенного на лицевой стороне генератора множества осажденных слоев, образующих диодные планарные n+-р-р+ или р+-n-n+, или n-р структуры, соединенные последовательно по направлению распространения излучения, один или два линейных размера каждой диодной структуры не превышают диффузионной длины неосновных носителей заряда в базовой области, а толщина диодной структуры в направлении распространения излучения обратно пропорциональны максимальному коэффициенту поглощения излучения в полупроводниковом материале.

Дополнительное увеличение эффективности преобразования достигается тем, что просветляющее покрытие расположено также и на торцах, а рабочая поверхность, на которую поступает дополнительное излучение, расположена, по крайней мере, еще на одной поверхности генератора.

В способе изготовления полупроводникового фотоэлектрического генератора, включающем создание структуры с n-р переходом на полупроводниковой подложке, металлизацию, нанесение просветляющего покрытия, путем последовательного осаждения на лицевой стороне генератора создают множество полупроводниковых слоев толщиной 10 нм-10 мкм, образующих диодные планарные n+-р-р+ или р+-n-n+, или n-р структуры, при этом один или два линейных размера каждой диодной структуры не превышают диффузионной длины неосновных носителей заряда в базовой области, а толщины диодных структур в направлении распространения излучения обратно пропорциональны максимальному коэффициенту поглощения излучения в полупроводниковом материале, на полученную многослойную планарную матрицу подают импульсное напряжения, пробивают обратносмещенные переходы, образуя последовательное соединенные структуры по направлению распространения излучения.

Для повышения эффективности преобразования полупроводникового фотоэлектрического генератора просветляющее покрытие дополнительно наносится также и на торцевые поверхности, а множество слоев создают путем проведения последовательной эпитаксии.

Сущность изобретения поясняется фиг.1 и фиг.2.

На фиг.1 представлена общая схема конструкции полупроводникового фотоэлектрического генератора на основе множества осажденных слоев для варианта структур с n-р переходами.

На фиг.2 показана кривая распределения потока фотонов по толщине полупроводникового фотоэлектрического генератора и соответствующая ей схема фотогенератора для варианта n-р-р+ структур.

На фиг.1 фотоэлектрический генератор состоит из множества эпитаксиальных слоев р-типа 1 и n-типа 2, расположенных на полупроводниковой подложке 3 и образующих диодные планарные структуры 4; пробитых обратносмещенных р-n переходов 5; тыльного металлического контакта 6; просветляющего покрытия 7; лицевого металлического контакта 8; падающего на фотоэлектрический генератор электромагнитного излучения 9.

Диодные планарные структуры 4 соединены последовательно по направлению распространения излучения и являются n-р структурами. Один или два линейных размера каждой структуры 4 не превышают диффузионной длины неосновных носителей заряда в базовой области - слое n-типа 2, а толщины структур 4 в направлении распространения излучения обратно пропорциональны максимальному коэффициенту поглощения излучения в полупроводниковом материале. Полупроводниковая подложка 3 выполнена из монокристаллического кремния n-типа. Толщины слоев 1, 2 составляют 10 нм - 10 мкм, количество структур 4 2-100. Металлический контакт 6 размещен на тыльной стороне подложки 3 и представляет собой сплошной металлический слой, металлический контакт 8 размещен на рабочей поверхности и выполнен в виде гребенки.

На фиг.2 показаны: слои р-типа 1; слои n-типа 2; диодные планарные структуры 4; пробитые обратносмещенные р-n переходы 5; падающее на фотоэлектрический генератор электромагнитное излучение 9; слои р+-типа 10.

Слои р-типа 1 являются базовыми слоями для приведенного на фиг. 2 варианта n-р-р+ структур; d, d, d - толщина базовой области 1 1-й, 2-й и i-й диодной структуры 4 соответственно; х - координата толщины базовой области 1 диодных структур 4 фотогенератора; ΔФ1, ΔФ2, ΔФi - количество поглощенных фотонов в базовой области 1 1-й, 2-й и i-й диодной структуры 4 соответственно.

Устройство работает следующим образом.

Через просветляющее покрытие 7 электромагнитное излучение 9 поступает на соединенные последовательно с пробитыми обратносмещенными переходами 5 структуры 4, перпендикулярно или под некоторым углом к плоскости р-n перехода. Происходит поглощение фотонов в структурах 4, сопровождающееся образованием электронно-дырочных пар и появлением избыточных носителей заряда. Толщина осажденных эпитаксиальных слоев 1, 2 (фиг. 1) или 1, 2, 10 (фиг. 2) обеспечивает прозрачность и прохождение излучения 9, которое поступает на все структуры 4. Электронно-дырочные пары разделяются полем, что вызывает фототок, направленный в структурах 4 к базовым областям и во внешней цепи фототок, направленный к подложке 3, с суммарным напряжением структур. Т.о. конструкция полупроводникового фотоэлектрического генератора с последовательно соединенными структурами позволяет увеличивать напряжение, при этом эпитаксиальные слои обладают идентичностью кристаллической структуры, т.е. обеспечивается высокая однородность характеристик структур.

Электронное излучение 9, проходя через фотоэлектрический генератор, поглощается. При этом поток фотонов с частотой ω уменьшается, причем при прохождении бесконечно тонкого слоя толщиной dx уменьшение потока происходит пропорционально величине потока и толщине слоя:

где Ф - поток фотонов, α - коэффициент поглощения.

Проинтегрировав (1), получаем, что вглубь фотоэлектрического генератора поток фотонов убывает по экспоненциальному закону

,

где Ф0 - поток фотонов на поверхности (при х=0).

Представленное на фиг.2 условное распределение потока фотонов Ф(х) по толщине фотоэлектрического генератора служит иллюстрацией принципа нахождения оптимальных значений толщин базовых областей диодных планарных структур 4.

Применение эпитаксии позволяет достичь высокой степени идентичности, что дает возможность изготавливать фотоэлектрические генераторы по прецизионной компьютерной технологии. А также обеспечить технологичность, высокую эффективность процесса изготовления и снизить количество солнечного кремния на 1 Вт выходной мощности генератора.

Применение после создания структуры пробоя стабилизирует рабочее состояние фотогенератора, оптимизируя структурный состав и устраняя точечные дефекты.

Предложенный фотоэлектрический генератор является планарно-высоковольтным, позволяет объединить достоинства обеих конструкций, обеспечить более эффективное преобразование электромагнитного излучения, увеличить напряжение. Изготавливать по планарной, наиболее отработанной технологии высоковольтные фотоэлектрические генераторы, планарные фотоэлектрические генераторы, преобразующие концентрированное излучение.

Пример конкретного выполнения.

Фотоэлектрический генератор представляет собой множество эпитаксиальных слоев толщиной 10 нм - 10 мкм, образующих планарные структуры с n+-р-р+ переходами, на полупроводниковой подложке из кремния n-типа марки КДБ 0,5(0.1) с пробитыми обратносмещенными р+-n переходами, с отражающим покрытием в виде нитрида кремния типа SixNy или Та2O5, причем последний эффективно использовать, т.к. Та2O5 имеет высокое пропускание в УФ-диапазоне, с металлическими контактами из слоев никеля-меди-олова.

Пример изготовления фотогенератора.

На подложке из кремния n-типа марки КДБ 0,5(0.1) йонно-молекулярной эпитаксией создают многослойную эпитаксиальную n-р-n-…-р структуру из 2-100 структур с n-р переходами, проводя поочередно легирование бором и фосфором, при этом толщина слоев 10 нм ÷ 10 мкм.

Металлизацию осуществляют напылением в вакууме или химическим осаждением металла. Полученные заготовки шлифуют и протравливают в растворе состава HF:HNO3=1:2 при комнатной температуре в течение 10-20 секунд для снятия шунтов, тщательно промывают, сушат.

Далее на матрицы заготовки подают импульсное напряжение величиной 0,5-1,2 В на один р-n переход при емкости 1,5·10-2-10·10-2Ф и пробивают обратносмещенные переходы, создавая последовательное соединение планарных структур.

Затем на рабочей поверхности формируют просветляющее покрытие: например, покрывают при нагревании пленкой нитрида кремния типа SixNy осаждением из парогазовой фазы, содержащей моносилан и азот. Облуживают припоем ПОС-60, присоединяют токоотводы.

В результате получается конструкция фотоэлектрического генератора, представленная на фиг.1.

1. Полупроводниковый фотоэлектрический генератор, содержащий подложку, полупроводниковые слои р-типа и n-типа, просветляющее покрытие, металлические контакты, отличающийся тем, что на лицевой стороне генератора расположено множество осажденных слоев, образующих диодные планарные n+-р-р+, или р+-n-n+, или n-р структуры, соединенные последовательно по направлению распространения излучения, один или два линейных размера каждой диодной структуры не превышает диффузионной длины неосновных носителей заряда в базовой области, а толщина диодной структуры в направлении распространения излучения обратно пропорциональна максимальному коэффициенту поглощения излучения в полупроводниковом материале.

2. Полупроводниковый фотоэлектрический генератор по п.1, отличающийся тем, что просветляющее покрытие расположено также и на торцах, а рабочая поверхность, на которую поступает дополнительное излучение, расположена, по крайней мере, еще на одной поверхности генератора.

3. Способ изготовления полупроводникового фотоэлектрического генератора путем создания осаждением структуры с n-р переходом на полупроводниковой подложке, металлизации, нанесения просветляющего покрытия, отличающийся тем, что путем последовательного осаждения на лицевой стороне генератора создают множество полупроводниковых слоев толщиной 10 нм - 10 мкм, образующих диодные планарные n+-р-р+, или р+-n-n+, или n-р структуры, при этом один или два линейных размера каждой диодной структуры не превышают диффузионной длины неосновных носителей заряда в базовой области, а толщины диодных структур в направлении распространения излучения обратно пропорциональны максимальному коэффициенту поглощения излучения в полупроводниковом материале, на полученную многослойную планарную матрицу подают импульсное напряжение, пробивают обратносмещенные переходы, образуя последовательно соединенные структуры по направлению распространения излучения.

4. Способ по п.3, отличающийся тем, что просветляющее покрытие наносится также и на торцевые поверхности.

5. Способ по п.3 или 4, отличающийся тем, что множество слоев создают путем проведения последовательной эпитаксии.



 

Похожие патенты:

Изобретение относится к солнечной энергетике, в частности к способу изготовления фотоэлектрических преобразователей, и может быть использовано в электронной промышленности для преобразования световой энергии в электрическую.

Изобретение относится к области создания полупроводниковых приборов, чувствительных к излучению, в частности к изготовлению фотоэлектрических преобразователей на основе полупроводников А3В5, и может использоваться для создания узкозонных фотопреобразователей на основе антимонида галлия, которые являются частью каскадных солнечных элементов и термофотопреобразователей, применяемых в системах автономного энергоснабжения.

Изобретение относится к микроэлектронике и может быть использовано для изготовления приемников ИК-излучения. .

Изобретение относится к технологии получения полупроводников и предназначено, в частности, для производства приборов оптоэлектроники. .

Изобретение относится к области авиационно-космической техники, в частности к производству каркасных конструкций из трубчатых или стержневых элементов из композиционных материалов (КМ), и может быть использовано при разработке и изготовлении каркасных изделий, например элементов космических платформ или каркасов створок солнечных батарей.
Изобретение относится к электронной технике, а именно к технологии изготовления полупроводниковых фотопреобразователей (ФП), и может быть использовано в производстве возобновляемых источников энергии.

Изобретение относится к области полупроводниковой электроники и может быть использовано при формировании солнечных элементов и каскадных преобразователей на их основе.

Изобретение относится к области полупроводниковой электроники и может быть использовано в технологических процессах при производстве солнечных элементов. .

Изобретение относится к технологии изготовления полупроводниковых фотоприемников и может использоваться для создания многоэлементных матричных фотоприемников различного назначения.

Изобретение относится к технологии изготовления матриц фоточувствительных элементов с p-n-переходами для микрофотоэлектроники инфракрасного диапазона. .
Изобретение относится к области электронной техники, в частности к устройствам прямого преобразования солнечной энергии в электрическую, и может быть использовано в наземных фотоэлектрических модулях малой мощности, предназначенных для использования в составе автономных источников питания для мобильных электрических приборов.

Изобретение относится к преобразователям энергии электромагнитного светового излучения в электрическую энергию и может быть использовано в производстве фотоэлементов, в том числе солнечных фотоэлементов.

Изобретение относится к области разработки и производства фотопреобразователей света и может быть использовано для преобразования мощности света в электрическую мощность.

Изобретение относится к электронной технике, а именно к приборам, преобразующим энергию электромагнитного излучения в электрическую, и технологии их изготовления, в частности к полупроводниковым фотоэлектрическим генераторам.

Изобретение относится к области солнечной энергетики и может быть использовано для прямого преобразования солнечной энергии в тепловую или электрическую энергию.

Изобретение относится к устройствам, генерирующим электроэнергию путем прямого преобразования солнечной энергии в электрическую с помощью полупроводниковых фотопреобразователей (ФП), и используемым преимущественно в космической технике в качестве первичных источников электрического тока.

Изобретение относится к преобразователям энергии электромагнитного излучения в электрическую энергию и может быть использовано в производстве солнечных фотоэлементов.

Изобретение относится к области солнечной энергетики и может быть использовано при изготовлении солнечных элементов
Наверх