Способ селективного извлечения золота из водных тиоцианатных растворов

Изобретение относится к способу селективного извлечения золота из водных тиоцианатных растворов. Способ включает сорбцию на анионите с последующей десорбцией золота с анионита. При этом извлечение ведут из растворов, содержащих золото в виде устойчивого комплекса Au (I) и металлы-примеси железа (III), меди (II), цинка (II), серебра (I), кобальта (II), никеля (II). Сорбцию осуществляют на анионите АН-251. Перед десорбцией золота анионит обрабатывают раствором 0,005-0,05 М H2SO4 в статических условиях для десорбции и удаления металлов-примесей. Десорбцию золота с анионита осуществляют раствором 1-5 М KSCN в присутствии 2-10% КОН. Техническим результатом изобретения является повышение экспрессности и селективности извлечения золота, а также возможность полного разделения золота от ионов железа, меди, цинка, никеля, кобальта и серебра. Способ экологически безопасен. 2 табл.

 

Изобретение относится к области аналитической химии, в частности к методам разделения и концентрирования.

Известен способ раздельного получения золота и серебра из растворов, включающий извлечение их из растворов сорбцией на анионитах и последующее разделение десорбцией в растворе тиомочевины в серной кислоте [Иониты в цветной металлургии. Под ред. К.Б.Лебедева, М.: Металлургия, 1975. - 352 с.]. К недостаткам этого метода можно отнести щелочную среду, которая не позволяет эффективно использовать селективные к золоту слабоосновные аниониты, высокую склонность цианид-иона к комплексообразованию с ионами переходных металлов, что усложняет процесс разделения и концентрирования золота, использование дорогостоящего реагента для десорбции золота с анионита.

Наиболее близким техническим решением, выбранным в качестве прототипа, является способ [Патент РФ №2266342; МПК С22В 11/100, С22В 31/24, опубл. 2005.12.20] раздельного получения золота и серебра из растворов, включающий извлечение их из растворов сорбцией на анионитах и последующее разделение десорбцией в растворе тиомочевины в серной кислоте. Недостатки этого способа заключаются в том, что не учитывается возможное присутствие в растворе ионов других металлов (железа (III) и цветных металлов), и извлечение золота проводится в виде тиоцианатных комплексов золота (III), имеющих склонность к диспропорционированию (что может уменьшать как степень извлечения золота из раствора, так и степень его десорбции), а также высокая стоимость тиомочевины, которая используется в качестве элюента золота и серебра.

Технический результат изобретения заключается в повышении экспрессности и селективности извлечения золота, а также в возможности полного разделения ионов золота (I) от железа (III), меди (II), цинка (II), серебра (I), кобальта (II) и никеля (II).

Указанный технический результат достигается тем, что в способе селективного извлечения золота из водных тиоцианатных растворов, включающем сорбцию на анионите с последующей десорбцией золота с анионита, новым является то, что извлечение ведут из растворов, содержащих золото в виде устойчивого комплекса Au (I) и металлы примеси железа (III), меди (II), цинка (II), серебра (I), кобальта (II), никеля (II), сорбцию осуществляют на анионите АН-251, перед десорбцией золота анионит обрабатывают раствором 0,005-0,05 М H2SO4 в статических условиях для десорбции и удаления металлов-примесей, а десорбцию золота с анионита осуществляют раствором 1-5 М KSCN в присутствии 2-10% КОН.

В способе на первом этапе происходит извлечение золота (I) в виде тиоцианатного комплекса на высокоселективном анионите АН-251, обладающем высокой обменной емкостью по золоту (при этом извлекаются лишь небольшие количества ионов переходных металлов в виде тиоцианатных комплексов). Далее, с анионита десорбцией раствором 0,005-0,05 М серной кислоты удаляются ионы переходных металлов, после чего проводится десорбция золота раствором 2-10% КОН в присутствии 1-5 моль/л KSCN (примеси цветных металлов, железа и серебра с ионита десорбируют водным раствором серной кислоты, а золото щелочным раствором тиоцианата калия).

В заявляемом способе выделение золота осуществляют из растворов в присутствии избытка ряда металлов (железа, меди, цинка, серебра, кобальта и никеля), которые содержатся в золотосодержащем сырье. Условия извлечения таковы, что золото находится в растворе в виде устойчивых комплексов Au (I), и оптимальны для применения слабо- и смешанноосновных анионитов. Для очистки анионита от ионов сопутствующих металлов и десорбции золота применяют дешевые реагенты, необходимые в малом количестве для осуществления процесса.

Эти отличия позволяют сделать вывод о соответствии заявляемого технического решения критерию «новизна». Признаки, отличающие заявляемый способ от прототипа, не выявлены в других технических решениях при изучении данной и смежных областей химии и, следовательно, обеспечивают заявляемому решению соответствие критерию «изобретательный уровень».

Заявляемый способ осуществляется следующим образом.

Предварительно набухший анионит АН-251 в хлоридной (сульфатной либо тиоцианатной) форме массой 0,1 г приводят в контакт при встряхивании (перемешивании) с раствором следующего состава: концентрация KSCN (CKSCN) 0,1 моль/л, концентрация по золоту (I) 2,0·10-4 моль/л (40 мг/л), по серебру (I) 2,0·10-4 моль/л (21 мг/л), по железу (III) 2,2·10-3 моль/л (124 мг/л), по меди (II) 1,0·10-3

моль/ л (63 мг/л), по цинку (II) 1,0·10-3 моль/л (65 мг/л), по никелю (II) 1,0·10-3 моль/л (59 мг/л), по кобальту (II) 1,0·10-3 моль/л (59 мг/л), рН 2. По истечении 24 ч анионит отделяют от раствора фильтрованием и добавляют к нему 10 мл 0,005-0,05 М H2SO4, затем еще через 2 ч раствор кислоты отделяют от анионита и приливают к последнему 15-20 мл 3-5 М раствора KSCN, содержащего 10% КОН. После 3 ч раствор KSCN, содержащий золото, отделяют от анионита. После раздельной десорбции золото можно использовать для дальнейшей работы (например, путем электролиза раствора тиоцианатного комплекса золота можно получить его в виде металла). Анионит после регенерации можно использовать для повторной сорбции в описываемом способе. Характеристики предлагаемого способа представлены в табл.1, 2.

Таблица 1
Данные по сорбции тиоцианатных комплексов металлов при сорбции анионитом АН-251 в исходной Cl--форме из поликомпонентного раствора, CKSCN=0,1 моль/л, рН 2
Металл Au (I) Ag (I) Fe (III) Cu (II) Zn (II) Co (II) Ni (II)
Статическая обменная емкость, мг/г 37,5 5 12 3,5 4,3 <0,1 <0,2
Коэффициент разделения Kf Kf(Au/сумма) Kf(Au/Ag) Kf(Au/Fe) Kf(Au/Cu) Kf(Au/Zn) Kf(Au/Со) Kf(Au/W)
8,9 4 62,5 2,9 3,8 112 98
Коэффициент распределения 5000 1250 80 1750 1308 40 60

Таблица 2
Концентрация ионов металлов в элюате после обработки анионита АН-251 раствором серной кислоты
Концентрация H2SO4, н Au (I) Ag (I) Fe (III) Cu (II) Zn (II) Со (II) Ni (II)
0,02 0 0 17,5 0,2 0,66 0,2 0,4
0,2 <0,02 <0,02 25 0,2 0,78 0,3 0,6
1 0 1 13 0,1 1,4 0.2 0,4

Пример 1. Предварительно набухший анионит АН-251 в хлоридной форме массой 0,1 г приводят в контакт при встряхивании (перемешивании) с раствором следующего состава: концентрация KSCN 0,1 моль/л, концентрация по золоту (I)

2,0·10-4 моль/л (40 мг/л), по серебру (I) 2,0·10-4 моль/л (21 мг/л), по железу (III)

2,2·10-3 моль/л (124 мг/л), по меди (II) 1,0·10-3 моль/л (63 мг/л), по цинку (II) 1,0·10-3 моль/л (65 мг/л), по никелю (II) 1,0·10-3 моль/л (59 мг/л), по кобальту (II) 1,0·10-3 моль/л (59 мг/л), рН 2. По истечении 3 ч ионит отделяют от раствора фильтрованием и добавляют к нему 10 мл 0,005 М H2SO4 серной кислоты, затем еще через 2 ч раствор кислоты отделяют от анионита и приливают к последнему 15 мл 3 М раствора KSCN, содержащего 10% КОН. После 3 ч раствор KSCN, содержащий золото, отделяют от анионита. После раздельной десорбции золото можно использовать для дальнейшей работы (например, путем электролиза раствора тиоцианатного комплекса золота можно получить его в виде металла).

Пример 2. Предварительно набухший анионит АН-251 в тиоцианатной форме массой 0,1 г приводят в контакт при встряхивании (перемешивании) с раствором следующего состава: концентрация KSCN 0,1 моль/л, концентрация по золоту (I)

2,0·10-4 моль/л (40 мг/л), по серебру (I) 2,0·10-4 моль/л (21 мг/л), по железу (III)

2,2·10-3 моль/л (124 мг/л), по меди (II) 1,0·10-3 моль/л (63 мг/л), по цинку (II) 1,0·10-3 моль/л (65 мг/л), по никелю (II) 1,0·10-3 моль/л (59 мг/л), по кобальту (II) 1,0·10-3 моль/л (59 мг/л), рН 2. По истечении 24 ч анионит отделяют от раствора фильтрованием и добавляют к нему 10 мл 0,05 М Н2SO4 серной кислоты, затем еще через 2 ч раствор кислоты отделяют от анионита и приливают к последнему 20 мл 1 н. раствора KSCN, содержащего 10% КОН. После 3 ч раствор KSCN, содержащий золото, отделяют от ионита. После раздельной десорбции золото можно использовать для дальнейшей работы (например, путем электролиза раствора тиоцианатного комплекса золота можно получить его в виде металла).

Пример 3. Предварительно набухший анионит АН-251 в сульфатной форме массой 0,1 г приводят в контакт при встряхивании (перемешивании) с раствором следующего состава: концентрация KSCN 0,1 моль/л, концентрация по золоту (I) 2,0·10-4 моль/л (40 мг/л), по серебру (I)

2,0·10-4 моль/л (21 мг/л), по железу (III) 2,2·10-3 моль/л (124 мг/л), по меди (II) 1,0·10-3 моль/л (63 мг/л), по цинку (II) 1,0·10-3 моль/л (65 мг/л), по никелю (II) 1,0·10-3 моль/л (59 мг/л), по кобальту (II) 1,0·10-3 моль/л (59 мг/л), рН 2. По истечении 24 ч анионит отделяют от раствора фильтрованием и добавляют к нему 10 мл 0,0025 М H2SO4 серной кислоты, затем еще через 2 ч раствор кислоты отделяют от анионита и приливают к последнему 20 мл 3 М раствора KSCN, содержащего 10% КОН. После 24 ч раствор KSCN, содержащий золото, отделяют от анионита. После раздельной десорбции золото можно использовать для дальнейшей работы (например, путем электролиза раствора тиоцианатного комплекса золота можно получить его в виде металла).

Пример 4. Предварительно набухший анионит АН-251 в тиоцианатной форме массой 0,1 г приводят в контакт при встряхивании (перемешивании) с раствором следующего состава: концентрация KSCN 0,1 моль/л, концентрация по золоту (I)

2,0·10-4 моль/л (40 мг/л), по серебру (I) 2,0·10-4 моль/л (21 мг/л), по железу (III)

2,2·10-3 моль/л (124 мг/л), по меди (II) 1,0·10-3 моль/л (63 мг/л), по цинку (II) 1,0·10-3 моль/л (65 мг/л), по никелю (II) 1,0·10-3 моль/л (59 мг/л), по кобальту (II) 1,0·10-3 моль/л (59 мг/л), рН 2. По истечении 24 ч анионит отделяют от раствора фильтрованием и добавляют к нему 20 мл 0,005 М Н2SO4 серной кислоты, затем еще через 2 ч раствор кислоты отделяют от анионита и приливают к последнему 20 мл 5 М раствора KSCN, содержащего 2% КОН. После 3 ч раствор KSCN, содержащий золото, отделяют от анионита. После раздельной десорбции золото можно использовать для дальнейшей работы (например, путем электролиза раствора тиоцианатного комплекса золота можно получить его в виде металла).

Использование заявляемого изобретения открывает возможность раздельного получения золота из материалов, содержащих железо, медь, цинк, никель, кобальт и серебро. Для процессов сорбции и десорбции применяются дешевые, нетоксичные растворы тиоцианата калия, что позволяет разработать экологически безопасные технологии извлечения золота.

Таким образом, в результате использования заявляемого технического решения повышается экспрессность и селективность извлечения золота, а также возможность полного разделения ионов золота и ионов железа, меди, цинка, никеля, кобальта и серебра.

Способ селективного извлечения золота из водных тиоцианатных растворов, включающий сорбцию на анионите с последующей десорбцией золота с анионита, отличающийся тем, что извлечение ведут из растворов, содержащих золото в виде устойчивого комплекса Au (I) и металлы-примеси железа (III), меди (II), цинка (II), серебра (I), кобальта (II), никеля (II), сорбцию осуществляют на анионите АН-251, перед десорбцией золота анионит обрабатывают раствором 0,005-0,05 М H2SO4 в статических условиях для десорбции и удаления металлов-примесей, а десорбцию золота с анионита осуществляют раствором 1-5 М KSCN в присутствии 2-10% КОН.



 

Похожие патенты:

Изобретение относится к металлургии, в частности к способу извлечения никеля из никельсодержащих растворов. .
Изобретение относится к гидрометаллургии и может быть использовано при извлечении золота из упорных сульфидных руд с использованием сорбционных процессов. .
Изобретение относится к гидрометаллургическим способам извлечения золота сорбцией на смолу и может быть использовано при извлечении золота из упорных сульфидных руд цианистым методом.
Изобретение относится к гидрометаллургии и аналитической химии, в частности к способу извлечения палладия (II) из отработанных катализаторов. .

Изобретение относится к металлургии редких металлов, в частности к способу извлечения галлия из растворов. .

Изобретение относится к гидрометаллургии, в частности к способу десорбции золота и сурьмы с насыщенной смолы. .

Изобретение относится к способам извлечения платиновых металлов из бедных сульфатных растворов и может быть использовано для выделения платиновых металлов (ПМ) из сред, содержащих микроколичества этих элементов и макроколичества неблагородных металлов.

Изобретение относится к области гидрометаллургии платины, в частности к способам извлечения платины из солянокислых растворов сложного состава, например из маточных растворов аффинажа платины, и других технологических растворов сорбцией.

Изобретение относится к гидрометаллургии благородных металлов и может быть использовано в технологии сорбционного извлечения золота из продуктивных растворов подземного, кучного и агитационного выщелачивания руд.

Изобретение относится к гидрометаллургии редких металлов и может быть использовано для извлечения рения из растворов. .
Изобретение относится к гидрометаллургии редких и благородных металлов, в частности к способам получения концентратов этих металлов из содержащих их кислых растворов.
Изобретение относится к гидрометаллургии редких и благородных металлов, в частности к способам получения концентрата, содержащего рений и платину, из содержащих их кислых растворов.
Изобретение относится к области металлургии благородных металлов, в частности к технологии селективного извлечения благородных металлов из растворов, содержащих цветные металлы.
Изобретение относится к гидрометаллургии, в частности к способу подготовки упорных золотосодержащих сульфидных руд к выщелачиванию. .
Изобретение относится к металлургическому способу извлечения металлов платиновой группы (МПГ), в частности, из труднообогащаемых материалов, таких как отвалы разрабатываемых месторождений.
Изобретение относится к металлургии благородных металлов и может быть использовано в технологии аффинажа металлов платиновой группы. .

Изобретение относится к металлургии благородных металлов и может быть использовано для избирательного извлечения золота из гравитационных и флотационных концентратов золотоизвлекательных фабрик при доводке золотосодержащих продуктов до требований аффинажа.

Изобретение относится к способам переработки остатков автоклавного выщелачивания сульфидных материалов цветной металлургии и может быть использовано для выделения образовавшейся на выщелачивании элементарной серы из окисленной пульпы с получением серного и сульфидного концентратов.
Изобретение относится к способу извлечения и утилизации палладия, серебра и меди из отработанных электролитов, содержащих тиомочевину, серную кислоту, воду и шлам. .

Изобретение относится к области аналитической химии благородных металлов (БМ), в частности пробирному анализу, и может быть использовано для определения золота и металлов платиновой группы (МПГ) в сульфидных рудах и продуктах их переработки
Наверх