Способ управления процессом мокрого самоизмельчения материалов в мельничном агрегате

Изобретение относится к автоматизации процесса мокрого самоизмельчения материалов в мельничных агрегатах. Способ управления процессом мокрого самоизмельчения материалов в мельничном агрегате включает регулирование величины загрузки и расхода воды для оптимизации контролируемого параметра. В качестве контролируемого параметра оптимизации определяют параметры температуры оборотной воды и слива, которые регулируют подачей предварительно подогретой до температуры 30-80°С части оборотной воды. Общий объем воды, подаваемой в ММС, поддерживается постоянным, соответствующим заданному режиму Ж:Т. Технический результат заключается в повышении эффективности процесса мокрого самоизмельчения. 1 ил.

 

Изобретение относится к автоматизации процесса мокрого самоизмельчения мерзлых материалов в мельничных агрегатах и может быть использовано в любых отраслях промышленности, связанных с процессами мокрого самоизмельчения материалов (далее ММС), содержащих полезный компонент, например, алмаз.

Известен способ автоматического управления соотношением расхода жидкой и твердой фаз потоков в загрузке мельницы (авт. св. №1526829, В02С 25/00, опубл. 07.12.1988. Бюл. №45), включающий измерение расходов жидкой и твердой фаз входных потоков мельницы, задание их текущего соотношения.

Недостатком данного способа является отсутствие контроля и регулировки температуры сливов, которое является важным показателем при дезинтеграции руды в ММС в зимний период. Понижение производительности самоизмельчения руды при нарушении сохранности полезного компонента (техногенной повреждаемости алмазов) в зимнее время на обогатительных фабриках, использующих ММС, вызвано мерзлым состоянием поступающей в мельницу руды и снижением температуры оборотной воды. В результате возникает необходимость увеличения объема подаваемой в мельницу воды, что, в свою очередь, приводит к изменению режима измельчения за счет изменения плотности пульпы и, как следствие, ухудшению сохранности раскрываемых алмазов.

Наиболее близким техническим решением является способ управления процессом мокрого самоизмельчения материалов в мельничном агрегате (пат. РФ №2184615, В02С 25/00, опубл 10.07.2002. Бюл. №19), включающий регулирование величины загрузки и расхода воды для оптимизации контролируемого параметра, причем в качестве контролируемого параметра оптимизации определяют удельный расход электрической энергии на измельчение регулированием расхода воды в зависимости от разницы температур пульпы на выходе и воды на входе и величины загрузки мельничного агрегата.

Недостатком данного способа является то, что использование в качестве оценочного критерия результативности величины удельного расхода электроэнергии на тонну измельченного материала при значительных вариациях показателя Ж:Т (показатель, характеризирующий плотность сливов как отношение жидкого к твердому) невозможно в случае использования ММС при повышенных требованиях к сохранности полезного компонента. В случае ограничения количества воды, подаваемой в ММС, происходит загущение рудной загрузки, вызывающее уменьшение производительности ММС. В случае подачи большего количества воды в ММС происходит вымывание мелкого класса (более быстрая его разгрузка). Это приводит к тому, что в мельнице преобладает количество мелющего материала (более 60%), вызывающего нарушение радиальной сегрегации и переводящая ММС в менее сохранный для кристаллов (например, алмазов), но более производительный режим работы. Кроме того, использование данного способа для дезинтеграции мерзлых руд приводит к повышенному расходу подаваемой в мельницу воды, что вызывает изменение режима измельчения и, следовательно, к ухудшению сохранности полезного компонента, например раскрываемых алмазов.

Технической задачей, решаемой предлагаемым изобретением, является повышение эффективности процесса мокрого самоизмельчения мерзлых материалов в мельничном агрегате за счет обеспечения эффективного растепления руды и понижения расхода воды при обеспечении сохранности полезного компонента.

Указанный технический результат достигается тем, что в способе управления процессом мокрого самоизмельчения материалов в мельничном агрегате, включающем регулирование величины загрузки и расхода воды для оптимизации контролируемого параметра, в качестве контролируемого параметра оптимизации определяют параметры температуры оборотной воды и слива, которые регулируют подачей предварительно подогретой до температуры 30-80°С части оборотной воды, причем общий объем воды, подаваемой в ММС, поддерживается постоянным, соответствующим заданному режиму Ж:Т.

В предлагаемом способе новыми признаками в сравнении с прототипом являются следующие: в качестве контролируемого параметра оптимизации определяют параметры температуры оборотной воды и слива, которые регулируют подачей предварительно подогретой до температуры 30-80°С части оборотной воды, причем общий объем воды, подаваемой в ММС, поддерживается постоянным, соответствующий заданному режиму Ж:Т.

Характер изменения технологических показателей и техногенной повреждаемости алмазов в зимнее время на обогатительных фабриках, использующих ММС, свидетельствует об ухудшении условий дезинтеграции руды. Основным фактором данного ухудшения является мерзлое состояние поступающей в мельницу руды и снижение температуры оборотной воды до 0°С, меняющее температурный режим загрузки барабана, смещая его в область отрицательных температур. Данные изменения в связи с наличием жидкой водной фазы ведут к кристаллизации льда в объеме пульпы и образованию ледяной корки на поверхности рудных кусков. Это значительно снижает коэффициент трения, уменьшая производительность самоизмельчения кимберлитов. В результате на фабрике вынуждены увеличивать объем подаваемой в мельницу воды, что приводит к изменению режима измельчения и, как следствие, ухудшению сохранности раскрываемых алмазов.

Создать режимы измельчения в ММС, идентичные режимам работы в летние периоды, можно за счет увеличения температуры подаваемой в мельницы воды при определенном параметре Ж:Т.

Обеспечение и последующее поддержание оптимального температурного режима позволяет обеспечить эффективное растепление руды при понижении расхода воды, подаваемого в мельницу.

Поддержание общего объема воды, подаваемой в ММС, постоянным и соответствующим заданному режиму Ж:Т позволяет не допускать повышенного расхода подаваемой в мельницу воды, который вызывает изменение режима измельчения, что приводит к ухудшению сохранности раскрываемых алмазов.

Таким образом, за счет увеличения температуры подаваемой в мельницы воды при определенном параметре Ж:Т создаются режимы измельчения в ММС, идентичные режимам работы в летние периоды.

Совокупность признаков данного технического решения не выявлена из патентной документации и научно-технической информации, что свидетельствует об изобретательском уровне заявляемого технического решения.

На чертеже приведен один из вариантов блок-схемы реализации способа управления, где:

1 - барабан мельницы;

2 - поток (система) подачи руды в ММС;

3 - подача оборотной воды;

4 - подача подогретой воды;

5 - сливы ММС;

6 - блок определения температуры оборотной воды;

7 - комбинированный блок определения температуры и плотности слива;

8 - блок определения и выработки управляющего воздействия;

9 - исполнительный механизм регулирования расхода подогретой воды;

10 - исполнительный механизм регулирования расхода оборотной воды.

Способ осуществляют следующим образом.

В барабан мельницы 1 подают руду 2. Оборотную воду 3 и подогретую воду 4 предварительно заводят в общую трубу (на чертеже не указана), а затем подают в мельницу 1. Отработанную пульпу выводят через слив 5.

С помощью блоков 6 и 7 определяют соответственно температуру оборотной воды, а также температуру слива. По полученным значениям в блоке 8 определяют необходимость подачи части оборотной воды, подогретой до температуры 30-80°С и ее объем и вырабатывают управляющее воздействие на исполнительные механизмы 9 и 10, обеспечивающие подачу в мельницу оборотной и подогретой воды при поддержании общего объема воды, подаваемой в ММС, постоянным и соответствующим заданному режиму Ж:Т.

В результате управления процессом мокрого самоизмельчения материалов в мельничном агрегате по предлагаемому способу обеспечивается поддержание оптимального температурного режима измельчаемой в барабане ММС руды.

Пример конкретной реализации.

Вода и руда 2 в ММС 1 подаются в соответствии со схемой, приведенной на чертеже. При этом оборотную воду 3 и подогретую воду 4 вначале заводят в общую трубу, после чего вода поступает в мельницу 1.

Блоки 6 и 7, представленные датчиками измерения температуры, определяют соответственно температуру оборотной воды 3, а также температуру и плотность слива 5.

Контроль и регулировка объемов подаваемой подогретой воды могут быть реализованы различными способами. В данном случае управление задвижками подачи части подогретой оборотной воды 9 и основной оборотной воды 10 осуществляется исходя из показаний температурных датчиков, регистрирующих температуру сливов мельницы и оборотной воды. Суммарный объем подаваемой в мельницу оборотной воды и ее подогретой части остается постоянным, соответствующим заданному режиму Ж:Т (например, Ж:Т=0,5:1).

По полученным датчиками измерения температуры значениям в блоке 8 полученные значения сравниваются с заданными значениями и, при необходимости, вырабатывается управляющее воздействие на исполнительные механизмы 9 и 10, представляющие из себя управляемые регулируемые задвижки, установленные на трубах системы подачи основной оборотной воды 3 и подогретой части оборотной воды 4.

Управление задвижками осуществляется с использованием следующей функции, выведенной на основе уравнения теплового баланса:

.

Где mгор - масса горячей оборотной воды, подаваемой в ММС;

mхол - масса оборотной воды, подаваемой в ММС;

toбop - температура оборотной воды;

tслив - температура сливов ММС.

При этом температура сливов tслив является интегральным показателем, который сформирован температурой и объемом подаваемой в ММС руды и воды.

Температура мерзлой руды, подаваемой на фабрику в зимний период, колеблется от -1,5°С до -5°С. Результаты расчета объемов воды для ММС с производительностью 700 т/ч при расходе воды 350 м3/ч позволили установить, что для достижения температуры сливов +6°С в мельницу должна подаваться вода, нагретая до +10,7°С. При этом расход горячей воды при температуре +70°С составляет 57 м3/ч, а оборотной 293 м3/ч. Таким образом в зимний период в ММС с оборотной водой подают необходимый объем предварительно подогретой до температуры 30-80°С воды, при котором температура сливов ММС всегда больше 6-8°С. При этом общий объем воды, подаваемой в ММС, поддерживается постоянным, соответствующим заданному режиму Ж:Т, что сохраняет без изменения плотность пульпы и, соответственно, не приводит к повышению повреждаемости раскрываемых в ММС алмазов. Таким образом, обеспечивают эффективное растепление руды, не используя при этом дополнительные объемы воды.

Реализация данного способа позволит поддерживать заданный оптимальный температурный режим в барабане ММС и заданное соотношение Ж:Т и, таким образом, добиться повышения производительности самоизмельчения руды при обеспечении сохранности полезного компонента.

Способ управления процессом мокрого самоизмельчения материалов в мельничном агрегате, включающий регулирование величины загрузки и расхода воды для оптимизации контролируемого параметра, отличающийся тем, что в качестве контролируемого параметра оптимизации определяют параметры температуры оборотной воды и слива, которые регулируют подачей предварительно подогретой до температуры 30-80°С части оборотной воды, причем общий объем воды, подаваемой в мельницу мокрого самоизмельчения, поддерживается постоянным, соответствующий заданному режиму Ж:Т.



 

Похожие патенты:

Изобретение относится к области автоматического контроля и управления загрузкой мельниц мокрого самоизмельчения руд. .

Изобретение относится к порошковой металлургии и предназначено для получения порошка активированного алюминия, используемого в качестве энергетической добавки в различных композициях.

Изобретение относится к управлению работой измельчительного агрегата с замкнутым циклом и может быть использовано в цветной и черной металлургии, строительной и химической промышленности и других отраслях, где применяются барабанные мельницы для измельчения сырья.

Изобретение относится к области автоматизации процессов измельчения сырья и может найти применение в промышленности строительных материалов, горно-рудной и других отраслях промышленности.

Изобретение относится к средствам автоматизации процесса измельчения материалов в мельничных агрегатах и может быть использовано в металлургической, химической, цементной, алмазной, строительной и других отраслях промышленности, связанных с процессом измельчения материалов.

Изобретение относится к целлюлозно-бумажному производству и может быть использовано для регулирования процесса размола в аппаратах непрерывного размола, например в дисковых мельницах.

Изобретение относится к регенерации пластиков и может быть использовано при переработке изношенных шин в дробленую резиновую крошку. .

Изобретение относится к устройствам для управления процессом дробления материала в дробилке и может быть использовано в горнорудной и строительной промышленностях, принадлежит к области энергосберегающих технологий.

Изобретение относится к контролю и управлению дробящими и измельчающими машинами и может быть использовано в строительной, горнорудной и других отраслях промышленности.

Изобретение относится к устройству для обеспечения подачи продукта к вальцевой мельнице. .

Изобретение относится к управлению планетарной мельницей

Изобретение относится к производству строительных материалов, а именно к мокрому способу производства портландцементного клинкера на стадии приготовления сырьевой смеси

Изобретение относится к измерительному инструменту для индикации нагрузки в конусной дробилке

Изобретение относится к области обогащения руд полезных ископаемых и может быть использовано на обогатительных фабриках цветной металлургии

Изобретение относится к дробильной установке, способу и системе для управления процессом дробления. Дробильная установка содержит питатель, дробилку первой ступени для дробления подаваемого материала, дробилку второй ступени для дробления раздробленного материала и транспортер для перемещения раздробленного материала от первой дробилки ко второй дробилке. Дробильная установка содержит средства измерения для измерения объемного потока раздробленного материала и средства управления для регулирования скорости подачи материала, подвергаемого дроблению, в ответ на изменение объемного потока раздробленного материала. С помощью средств измерения в одной или нескольких точках между двумя или большим количеством ступеней дробления измеряют объемный поток материала. С помощью средств управления регулируют скорость подачи материала, подвергаемого дроблению в дробилке следующей ступени, в ответ на изменение объемного потока материала, раздробленного на предыдущих ступенях. Машиночитаемый носитель с хранящимся на нем компьютерным программным продуктом для управляющего модуля управляет процессом дробления в дробильной установке. Система управления технологическим процессом дробильной установки позволяет заменить корректирующие действия оператора при управлении процессом дробления. 4 н. и 8 з.п. ф-лы, 4 ил.

Изобретение относится к способу отделения налипшего материала от внутренней стенки измельчающего барабана шаровой барабанной мельницы и устройству для его осуществления. Способ заключается в том, что изменяют приводной момент, прилагаемый к измельчающему барабану (10), около заранее определенного и возрастающего эталонного уровня момента. Контроллер выполнен с возможностью управления приводным устройством, которое обеспечивает изменение прилагаемого им приводного момента около заранее определенного и увеличивающегося эталонного уровня. Способ и устройство обеспечивают плавное приложение момента, что позволяет предотвратить повреждения механизма трансмиссии шаровой мельницы. 2 н. и 5 з.п. ф-лы, 3 ил.

Изобретение относится к конусным дробилкам, в частности к упорному подшипнику конусной дробилки и способу поддержания ее вертикального вала. Конусная дробилка содержит дробящий конус с дробящей броней, жестко прикрепленный к верхнему участку вертикального вала 2, станину, на которой установлена вторая дробящая броня, образующая вместе с броней разгрузочную щель, упорный подшипник 24, первое пространство 40 и второе пространство 44. Ширина щели регулируется посредством изменения вертикального положения брони относительно вертикального положения брони. Упорный подшипник 24, состоящий из горизонтальных опорных дисков 26, 27, 28, расположен между вертикальным валом 2 и поршнем 30 и выполнен с возможностью передачи усилий от дробящего конуса на станину. При этом первое пространство 40 выполнено с возможностью приема изменяющегося количества жидкости под давлением и образовано поршнем 30 и корпусом 32 поршня, а второе пространство 44 выполнено с возможностью приема через канал 46 жидкости под давлением из первого пространства 40 и расположено между вертикальным валом 2 и поршнем 30. Способ поддержания вертикального вала заключается в передаче жидкости между первым пространством 40 и вторым пространством 44 в процессе работы дробилки 1. Упорный подшипник и способ поддержания вертикального вала позволяет снять нагрузку, действующую в вертикальном направлении, от дробящего конуса 12. 2 н. и 10 з.п. ф-лы, 7 ил.
Наверх