Способ термической обработки полуфабрикатов, изделий и сварных конструкций из высокопрочных альфа-титановых сплавов

Изобретение относится к термической обработке полуфабрикатов, изделий и сварных конструкций из высокопрочных α-титановых сплавов, которое может быть использовано в судостроительной и авиационной отраслях промышленности. Предложен способ термической обработки полуфабрикатов, изделий и сварных конструкций из высокопрочных α-титановых сплавов. Способ включает посадку металла в холодную печь, нагрев с наибольшей скоростью, допускаемой тепловой мощностью нагревательного устройства, до температуры 675±10°С, выдержку из расчета не менее 1 мин на 1 мм толщины наибольшего сечения. Охлаждение проводят со скоростью 1,5-2°С/мин до температуры 580±10°С, а далее на воздухе. Снижается склонность к коррозионному растрескиванию. 1 табл.

 

Изобретение относится к термической обработке полуфабрикатов, изделий и сварных конструкций из высокопрочных титановых α-сплавов с содержанием β-фазы до 15%. Изобретение может быть использовано на предприятиях цветной металлургии, судостроительной, авиационной промышленности, изготавливающих полуфабрикаты, изделия и сварные конструкции из высокопрочных титановых сплавов; α-сплавов.

Известны различные способы термической обработки титановых псевдо α-сплавов, в том числе отжиг при температурах 670-850°С [1-4].

Однако известные способы термической обработки, применяемые для ряда полуфабрикатов, таких как толстолистовой крупногабаритный прокат, цельнокатаные кольца, кольцевые поковки из высокопрочных титановых сплавов с небольшим количеством β-фазы и содержанием А1 свыше 5% и изделий, сварных конструкций из них, обладают недостатками. Например, отжиг, представленный в авторском свидетельстве №707989 [2], который позволяет повысить сопротивляемость развитию разрушения в морской воде. Недостаток этого способа заключается в том, что в результате охлаждения с предлагаемой скоростью более 40°С/мин в интервале температур 800-400°С в конструкциях и полуфабрикатах создаются значительные остаточные внутренние напряжения, что приводит к искажениям геометрии изделий.

Наиболее близким к изобретению по техническому исполнению является отжиг для снятия остаточных сварочных напряжений, представленный в [3], который обеспечивает снятие остаточных напряжений, но приводит к существенному снижению характеристик трещиностойкости в морской воде.

Способ включает посадку металла в холодную печь, нагрев с печью с наибольшей скоростью, допускаемой тепловой мощностью печи до температуры 660°C±10°C, выдержку из расчета не менее 1 мин на 1 мм толщины наибольшего сечения; охлаждение в печи со скоростью 0,67°С/мин до 300±10°С, ниже 300°С - охлаждение на воздухе. Такой режим медленного охлаждения в интервале температур от 600°С до 400°С способствует расслоению α-твердого раствора с образованием отдельных зон, обогащенных алюминием. Образование этих зон, имеющих более отрицательный электрохимический потенциал, чем α-фаза, приводит к появлению склонности к коррозионному растрескиванию металла изделий из высокопрочных титановых псевдоα-сплавов.

Техническим результатом предлагаемого изобретения является снижение склонности к коррозионному растрескиванию металла полуфабрикатов, изделий и сварных конструкций из высокопрочных титановых α-сплавов.

Поставленный технический результат достигается за счет того, что в способе термической обработки высокопрочных титановых α-сплавов, включающем посадку металла в холодную печь, нагрев с печью с наибольшей скоростью, допускаемой тепловой мощностью печи, до температуры 675±10°С, выдержку при этой температуре из расчета не менее 1 мин на 1 мм толщины наибольшего сечения; согласно изобретению охлаждение выполняют со скоростью 1,5÷2°С/мин до температуры 580±10°С, далее на воздухе.

Выдержка при 675±10°С и охлаждение со скоростью 1,5÷2°С/мин до температуры 580±10°С обеспечивают снятие исходных остаточных напряжений в металле. Повышение температуры выдержки нецелесообразно из-за опасного газонасыщения поверхностных слоев изделий. Повышение скорости охлаждения с 0,67°С/мин до 1,5÷2°С/мин не приводит к искажениям геометрии изделий.

Исследованиями установлено, что в интервале температур 580-400°С при скорости 0,67°С/мин происходит расслоение α-твердого раствора с образованием α2-фазы, что приводит к увеличению склонности металла к коррозионному растрескиванию.

Охлаждение на воздухе в интервале температур 580-400°С предотвращает расслоение α-твердого раствора и позволяет повысить стойкость металла к коррозионному растрескиванию.

Пример конкретного выполнения

Предлагаемый и известный способы проверяли на металле цельнокатаного кольца с толщиной стенки 72 мм и на металле катаной плиты толщиной 50 мм. Металл этих полуфабрикатов имел следующий химический состав: 5,49%Al; 1,51%V; 1,40%Mo; 0,12%С; 0,10%O.

По известному способу металл полуфабрикатов был нагрет до температуры 660°С, металл цельнокатаного кольца выдержан при данной температуре в течение 72 минут, металл катаной плиты в течение 50 минут, охлаждение вели в печи со скоростью 0,67°С/мин до 300°С, далее на воздухе.

По предлагаемому способу металл полуфабрикатов был нагрет до температуры 675°С, металл цельнокатаного кольца выдержан при данной температуре в течение 72 минут, металл катаной плиты в течение 50 минут, охлаждение вели в печи со скоростью 1,5°С/мин и 2°С/мин до температуры 580°С, далее на воздухе.

Из полуфабрикатов были изготовлены и испытаны на трехточечный изгиб в морской воде образцы сечением 35×70 мм по ГОСТ 25.506-85.

Результаты испытаний представлены в таблице.

Использование предлагаемого способа обработки изделий из высокопрочных титановых α-сплавов обеспечивает по сравнению с существующими способами уменьшение остаточных напряжений и искажений геометрии изделий и повышение сопротивления развитию разрушения в коррозионной среде на 23-44%.

Технико-экономический эффект от использования изобретения по сравнению с прототипом выразится в повышении надежности и долговечности конструкций из высокопрочных титановых α-сплавов за счет снижения склонности их к коррозионному растрескиванию.

Источники информации

1. Колачев Б.А., Полькин И.С., Талалаев В.Д. и др. «Титановые сплавы разных стран». М.: «ВИЛС», 2000, с.81-95.

2. Авторское свидетельство СССР №707989.

3. Лясоцкая В.С.«Термическая обработка сварных соединений титановых сплавов». М.: «Экомет», 2003, с.180-183.

4. Моисеев В.Н., Куликов Ф.Р., Кириллов Ю.Г. и др. «Сварные соединения титановых сплавов». М.: «Металлургия», 1979, с.80-92.

5. Колачев Б.А., Полькин И.С. и др. «Титановые сплавы разных стран», М.: ВИЛС, 2000, с.16

Способ термической обработки полуфабрикатов, изделий и сварных конструкций из высокопрочных α-титановых сплавов, включающий посадку металла в холодную печь, нагрев с наибольшей скоростью, допускаемой тепловой мощностью нагревательного устройства, до температуры (675±10)°С, выдержку из расчета не менее 1 мин на 1 мм толщины наибольшего сечения, отличающийся тем, что охлаждение проводят со скоростью 1,5-2°С/мин до температуры (580±10)°С, а далее на воздухе.



 

Похожие патенты:
Изобретение относится к обработке металлов давлением и может быть использовано для получения вольфрамовой проволоки для электроламповой промышленности. .

Изобретение относится к области деформационной обработки металлов давлением и может быть использовано в металлургии для изготовления сортового проката из нелегированного титана, например, медицинского назначения.
Изобретение относится к титановому сплаву, детали из упомянутого сплава и способу ее изготовления и может быть использовано для изготовления спортивного снаряжения, снаряжения для досуга, медицинских инструментов, а также промышленных узлов и деталей аэрокосмического оборудования.

Изобретение относится к обработке металлов давлением и может быть использовано при изготовления изделий из полуфабрикатов, полученных термомеханической обработкой, обеспечивающей повышение физико-механических свойств.
Изобретение относится к области цветной металлургии, в частности к термомеханической обработке изделий из титановых сплавов, и может быть использовано в авиакосмической и ракетной технике для изготовления болтов, шпилек и других крепежных деталей.

Изобретение относится к области наноструктурных материалов с ультрамелкозернистой структурой и повышенными механическими свойствами, которые могут быть использованы для изготовления медицинских имплантатов.
Изобретение относится к области обработки металлов давлением и может быть использовано, например, в авиационной промышленности при изготовлении деталей из титановых сплавов, преимущественно лопаток.

Изобретение относится к области металлургии, в частности к прокатному производству, и предназначено для изготовления плоского профиля из циркониевых сплавов, используемого в качестве конструкционного материала в активных зонах атомных реакторов, в химической и нефтегазовой промышленности.

Изобретение относится к способу изготовления особо тонких листов из высокопрочных титановых сплавов методом пакетной прокатки. .

Изобретение относится к области обработки металлов давлением, а именно к способу изготовления тонких листов из высокопрочного титанового сплава Ti-6Al-4V методом рулонной прокатки.

Изобретение относится к деформационно-термической обработке металлов с целью формирования ультрамелкозернистой структуры, обеспечивающей значительное повышение их физико-механических свойств, и может быть использовано в машиностроении, авиастроении, медицине

Изобретение относится к технологии механической обработки металлов давлением при интенсивной пластической деформации и может быть использовано для изготовления нанокристаллических труднодеформируемых металлов

Изобретение относится к области металлургии, а именно к способу получения изделий из -титанового сплава, содержащего 15% молибдена

Изобретение относится к области металлургии, в частности к формованию вытяжкой металлической заготовки
Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении промежуточных заготовок из ( + )-титановых сплавов

Изобретение относится к цветной металлургии, а именно к способу изготовления сварных листовых изделий из титановых сплавов и может быть использовано в машиностроении, в частности в авиастроении при производстве самолетных конструкций из титановых сплавов

Изобретение относится к области обработки металлов давлением, в частности к способам изготовления металлических пластин из гафния, используемых в активных зонах атомных реакторов, в химической и нефтегазовой промышленности
Изобретение относится к области машиностроения и может использоваться в турбомашиностроении при восстановлении эксплуатационных свойств рабочих и направляющих лопаток паровых турбин, газоперекачивающих установок и компрессоров газотурбинных двигателей, изготовленных из титановых сплавов
Изобретение относится к области машиностроения и может быть использовано в турбомашиностроении при восстановлении рабочих и направляющих лопаток паровых турбин, газоперекачивающих установок и компрессоров газотурбинных двигателей, изготовленных из легированных сталей

Изобретение относится к области машиностроения и может использоваться в турбомашиностроении при восстановлении эксплуатационных свойств рабочих и направляющих лопаток паровых турбин, газоперекачивающих установок и компрессоров газотурбинных двигателей, изготовленных из титановых сплавов
Наверх