Электродный материал для высокотемпературных электрохимических устройств и способ его изготовления

Изобретение относится к высокотемпературным электрохимическим устройствам различного назначения. Техническим результатом изобретения является увеличение электропроводности и электрохимической активности электродного материала. Согласно изобретению электродный материал содержит диоксид циркония, оксид металла, выбранный из группы, содержащей оксид кальция, оксид магния, оксиды редкоземельных элементов или их смесь, и добавку оксида металла, содержащую в своем составе смесь оксидов двух- и четырехвалентного урана, отвечающую формуле UO2-x, где х=0,2÷0,4, при следующем соотношении ингредиентов: смесь оксидов урана 0,2÷2 масс.%, диоксид циркония 2÷10 масс.%, оксид металла - остальное. Способ изготовления указанного электродного материала из исходных компонентов, содержащих соединения кобальта, циркония и металла из группы: кальций, магний, редкоземельные элементы или их смесь, обжиг и помол порошка, спекание порошка, дополнительно включает предварительное спекание материала при температуре от 900 до 1250°С в нейтральной или окислительной атмосфере, затем проводится помол полученного материала с добавлением в него смеси оксидов урана и вторичное спекание при температуре 1100-1550°С. 2 н. и 1 з.п. ф-лы.

 

Изобретение относится к высокотемпературным электрохимическим устройствам различного назначения: топливным элементам, кислородным насосам, электролизерам воды и других кислородсодержащим газам, а также датчикам для газоанализаторов кислородсодержащих газов.

Известен электродный материал, содержащий диоксид циркония, оксид металла, выбранный из группы, содержащей оксид кальция, оксид магния, оксиды редкоземельных элементов или их смесь, и добавку оксида металла (патент США №4052532).

Известен также электродный материал, содержащий диоксид циркония, оксид металла, выбранный из группы, содержащей оксид кальция, оксид магния, оксиды редкоземельных элементов или их смесь, и добавку оксида кобальта (патент РФ №2050642), выбранный за прототип.

Известные электродные материалы обладают недостаточной электропроводностью и электрохимической активностью, что затрудняет их применение в качестве электродных материалов для топливных элементов и электролизеров.

Предлагаемый электродный материал содержит в своем составе дополнительно смесь оксидов двух- и четырехвалентного урана, отвечающую формуле UO2-x, где х=0,2-0,4, при следующем соотношении ингредиентов: смесь оксидов урана 0,2-2 мас.%, диоксид циркония 2-10 мас.%, оксид металла - остальное.

Способ изготовления предлагаемого электродного материала отличается от известного по патенту РФ №2050642 тем, что спекание материала производится предварительно при температуре от 900 до 1250°С в нейтральной или окислительной атмосфере, затем проводится помол полученного материала с добавлением в него смеси оксидов урана и вторичное спекание при температуре 1100-1550°С.

Совокупность приведенных выше существенных признаков приводит к тому, что за счет введения в состав электродного материала смеси оксидов урана увеличивает электропроводность и электрохимическую активность электродного материала.

Пример 1. Приготовленный известным способом электродный материал, содержащий оксиды металлов и диоксид циркония в количестве 2 мас.%, размалывают в мельнице до микронной фракции с добавлением оксидов урана состава UO1,8 0,2 мас.% и проводят вторичное спекание при температуре 1100°С. Из полученного материала приготовляют электрод и проводят его испытания на восстановление и окисление кислорода, а также измерение электропроводности. Полученные значения поляризационных сопротивлений находятся в диапазоне 0,05-0,10 Ом/см2, а электросопротивление 0,001-0,003 Ом·см.

Пример 2. Приготовленный известным способом электродный материал, содержащий оксиды металлов и диоксид циркония в количестве 10 мас.%, размалывают в мельнице до микронной фракции с добавлением оксидов урана состава UO1,6 2 мас.% и проводят вторичное спекание при температуре 1550°С. Из полученного материала приготовляют электрод и проводят его испытания на восстановление и окисление кислорода, а также измерение электропроводности. Полученные значения поляризационных сопротивлений находятся в диапазоне 0,03-0,07 Ом/см2, а электросопротивление 0,0015-0,005 Ом·см.

Пример 3. Приготовленный известным способом электродный материал, содержащий оксиды металлов и диоксид циркония в количестве 1 мас.%, размалывают в мельнице до микронной фракции с добавлением оксидов урана состава UO1,5 4 мас.% и проводят вторичное спекание при температуре 1300°С. Из полученного материала приготовляют электрод и проводят его испытания на восстановление и окисление кислорода, а также измерение электропроводности. Полученные значения поляризационных сопротивлений находятся в диапазоне 0,08-0,15 Ом/см2, а электросопротивление 0,003-0,01 Ом·см.

Пример 4. Приготовленный известным способом электродный материал, содержащий оксиды металлов и диоксид циркония в количестве 12 мас.%, размалывают в мельнице до микронной фракции с добавлением оксидов урана состава UO1,9 4 мас.% и проводят вторичное спекание при температуре 1300°С. Из полученного материала приготовляют электрод и проводят его испытания на восстановление и окисление кислорода, а также измерение электропроводности. Полученные значения поляризационных сопротивлений находятся в диапазоне 0,1-0,2 Ом/см2, а электросопротивление 0,005-0,015 Ом·см.

Из приведенных в примерах данных следует, что наилучшие результаты по электрохимической активности и электросопротивлению имеют электродные составы в заявленном диапазоне изменения состава и температуры вторичного спекания, а именно: смесь оксидов урана 0,2-2 мас.%, диоксид циркония 2-10 мас.%, оксид металла остальное, при этом смесь оксидов урана отвечает формуле UO2-x, где х - 0,2-0,4, а вторичное спекание проводят при температуре 1100-1550°С.

1. Электродный материал для высокотемпературных электрохимических устройств, содержащий диоксид циркония, оксид металла, выбранный из группы, содержащей оксид кальция, оксид магния, оксиды редкоземельных элементов или их смесь, и добавку оксида металла, отличающийся тем, что в качестве добавки оксида металла использована смесь оксидов двухвалентного и четырехвалентного урана при следующем соотношении ингредиентов: смесь оксидов урана 0,2÷2 мас.%, диоксид циркония 2÷10 мас.%, оксид металла - остальное.

2. Электродный материал по п.1, отличающийся тем, что смесь оксидов урана отвечает формуле UO2-x, где х=0,2÷0,4.

3. Способ изготовления электродного материала для высокотемпературных электрохимических устройств исходных компонентов, содержащих соединения кобальта, циркония и металла из группы: кальций, магний, редкоземельные элементы, или их смесь, обжиг и помол порошка, спекание порошка, отличающийся тем, что спекание материала производится предварительно при температуре от 900 до 1250°С в нейтральной или окислительной атмосфере, затем проводится помол полученного материала с добавлением в него смеси оксидов урана и вторичное спекание при температуре 1100÷1550°С.



 

Похожие патенты:

Изобретение относится к электрохимическим устройствам и применяется в источниках электрической энергии на основе высокотемпературных твердооксидных топливных элементов.

Изобретение относится к области химических источников энергии (электрического тока) с прямым преобразованием химической энергии в электрическую. .

Изобретение относится к узлу соединения в высокотемпературном электрохимическом устройстве. .
Изобретение относится к области прямого получения электроэнергии из природного топлива, а именно к области высокотемпературных топливных элементов. .
Изобретение относится к энергетике, прямому преобразованию химической энергии в электрическую, и может быть использовано в электрохимии для измерения составов сред в качестве измерительного преобразователя концентрации окислителя или восстановителя в среде.
Изобретение относится к области высокотемпературных электрохимических устройств с твердым кислородионным электролитом и может быть использовано в качестве электролизера, топливного элемента или другого аналогичного устройства.
Изобретение относится к области высокотемпературных электрохимических устройств с твердым кислородионным электролитом и может быть использовано в качестве электродов при создании электролизеров, топливных элементов и других устройств.

Изобретение относится к высокотемпературным топливным элементам, в частности к твердооксидным топливным элементам. .

Изобретение относится к штабелю (10) высокотемпературных топливных элементов, стягиваемому с помощью временного стягивающего устройства, также к способу временной затяжки штабеля (10) топливных элементов и к способу удаления временного стягивающего устройства (12-22) для штабеля (10) высокотемпературных топливных элементов.

Изобретение относится к области твердооксидных топливных элементов. .
Изобретение относится к области электрохимической энергетики, а именно к высокотемпературным топливным элементам с твердым электролитом

Изобретение относится к электрохимическим устройствам и применяется в источниках электрической энергии на основе высокотемпературных твердооксидных топливных элементов

Изобретение относится к области водородной энергетики и представляет собой способ изготовления твердооксидных топливных элементов

Изобретение относится к области твердотельных электрохимических устройств

Изобретение относится к области электротехники, в частности, к многослойному покрытию, предназначенному для защиты металлов и сплавов от окисления при высоких температурах, которое может быть использовано в качестве покрытия для нанесения на соединительные материалы в твердооксидных электролитических устройствах, в том числе твердооксидных топливных элементах (ТОТЭ) и твердооксидных электролизерах (ТОЭ)

Изобретение относится к конструкции батарей твердооксидных топливных элементов (ТОТЭ), и более конкретно к конструкциям батарей элементов указанного типа, состоящим из металлических несущих трубчатых решеток с внутренними мембранами в виде топливных элементов

Изобретение относится к способу получения многослойной барьерной структуры в батарее твердооксидных элементов и к многослойной структуре, получаемой таким способом

Изобретение относится к композиционному материалу, пригодному для применения в качестве материала электрода твердооксидного элемента, в частности в твердооксидных топливных элементах или в твердооксидных электролизерных элементах
Изобретение относится к твердооксидным топливным элементам (ТОТЭ)
Наверх