Электрод твердооксидного топливного элемента и способ его изготовления

Изобретение относится к области электрохимической энергетики, а именно к высокотемпературным топливным элементам с твердым электролитом. Техническим результатом изобретения является повышение электрохимической активности электрода топливного элемента и эффективности получения электрической энергии. Согласно изобретению электрод твердооксидного топливного элемента, нанесенный на слой твердого электролита, состоит из частиц твердого электролита, имеющих смешанную или ионную проводимость, и пористых участков электропроводящего материала из кристаллических столбчатых структур электропроводящих материалов, контактирующих с частицами твердого электролита и поверхностью слоя твердого электролита через подслой электропроводящих кластеров, состоящих из не связанных между собой агломератов размером 0,5-5 мкм, занимающих от 40 до 80% поверхности твердого электролита, причем агломераты кластерного подслоя имеют смешанную электронно-ионную проводимость и нанесены магнетронным напылением одновременно с двух мишеней, состоящих из материала электрода с электронной проводимостью и материала твердого электролита с ионной проводимостью в соотношении по массе от 12:1 до 8:1. 2 н. и 1 з.п. ф-лы.

 

Изобретение относится к области электрохимической энергетики, а именно к высокотемпературным топливным элементам с твердым электролитом.

Известен электрод топливного элемента и способ его изготовления магнетронным напылением (патент США №5395704).

Известен также электрод из частиц твердого электролита, имеющих смешанную или ионную проводимость, и пористых участков электропроводящего материала, состоящих из распределенных по объему электрода кристаллических столбчатых структур электропроводящих материалов, контактирующих с частицами твердого электролита и поверхностью слоя твердого электролита через подслой электропроводящих кластеров, изготовленный способом магнетронного напыления, принятый за прототип (патент РФ №2128385).

Недостатками известных электродов является низкая электрохимическая активность электродов, связанная неразвитой трехфазной границей контакта твердого электролита, электрода и газовой фазы.

Сущность предлагаемого технического решения заключается в том, что подслой электропроводящих кластеров состоит из не связанных между собой агломератов размером 0,5-5 мкм и занимает от 40 до 80% поверхности твердого электролита, агломераты кластерного подслоя имеют смешанную электронно-ионную проводимость, и напыление кластерного подслоя проводят одновременно с двух мишеней, состоящих из материала электрода с электронной проводимостью и материала твердого электролита с ионной проводимостью в соотношении по массе от 12:1 до 8:1.

Пример 1. На поверхность твердого электролита на основе диоксида циркония нанесены магнетронным напылением агломераты кластерного подслоя размером 0,5 мкм, занимающего 40% поверхности твердого электролита с использованием мишеней из никеля и диоксидциркониевого электролита, соотношение материалов мишеней по массе 12:1. Далее на образованный подслой нанесен электрод по способу прототипа. Достигнутое значение плотности тока при окислении водорода составляет 200 мА/см2 при поляризации 50 мВ.

Пример 2. На поверхность твердого электролита на основе диоксида циркония нанесены магнетронным напылением агломераты кластерного подслоя размером 5 мкм, занимающего 80% поверхности твердого электролита с использованием мишеней из никеля и диоксидциркониевого электролита, соотношение материалов мишеней по массе 8:1. Далее на образованный подслой нанесен электрод по способу прототипа. Достигнутое значение плотности тока при окислении водорода составляет 190 мА/см2 при поляризации 50 мВ.

Пример 3. На поверхность твердого электролита на основе диоксида циркония нанесены магнетронным напылением агломераты кластерного подслоя размером 3 мкм, занимающего 70% поверхности твердого электролита с использованием мишеней из никеля и диоксидциркониевого электролита, соотношение материалов мишеней по массе 10:1. Далее на образованный подслой нанесен электрод по способу прототипа. Достигнутое значение плотности тока при окислении водорода составляет 230 мА/см2 при поляризации 50 мВ.

Пример 4. На поверхность твердого электролита на основе диоксида циркония нанесены магнетронным напылением агломераты кластерного подслоя размером 10 мкм, занимающего 50% поверхности твердого электролита с использованием мишеней из никеля и диоксидциркониевого электролита, соотношение материалов мишеней по массе 15:1. Далее на образованный подслой нанесен электрод по способу прототипа. Достигнутое значение плотности тока при окислении водорода составляет 130 мА/см2 при поляризации 50 мВ.

Пример 5. На поверхность твердого электролита на основе диоксида циркония нанесены магнетронным напылением агломераты кластерного подслоя размером 10 мкм, занимающего 95% поверхности твердого электролита с использованием мишеней из никеля и диоксидциркониевого электролита, соотношение материалов мишеней по массе 5:1. Далее на образованный подслой нанесен электрод по способу прототипа. Достигнутое значение плотности тока при окислении водорода составляет 90 мА/см2 при поляризации 50 мВ.

Таким образом, использование существенных признаков предлагаемого технического решения, а именно: подслой электропроводящих кластеров состоит из не связанных между собой агломератов размером 0,5-5 мкм и занимает от 40 до 80% поверхности твердого электролита, агломераты кластерного подслоя имеют смешанную электронно-ионную проводимость и напыление кластерного подслоя проводят одновременно с двух мишеней, состоящих из материала электрода с электронной проводимостью и материала твердого электролита с ионной проводимостью в соотношении по массе от 12:1 до 8:1, позволяет существенно улучшить электрохимические характеристики электрода топливного элемента.

1. Электрод твердооксидного топливного элемента, нанесенный на слой твердого электролита, состоящий из частиц твердого электролита, имеющих ионную проводимость, и пористых участков электропроводящего материала из кристаллических столбчатых структур электропроводящих материалов, контактирующих с частицами твердого электролита и поверхностью слоя твердого электролита через подслой электропроводящих кластеров, отличающийся тем, что подслой электропроводящих кластеров состоит из не связанных между собой агломератов размером 0,5-5 мкм и занимает от 40 до 80% поверхности твердого электролита.

2. Электрод по п.1, отличающийся тем, что агломераты кластерного подслоя имеют смешанную электронно-ионную проводимость.

3. Способ изготовления электрода твердооксидного топливного элемента, заключающийся в магнетронном напылении электрода на твердый электролит, отличающийся тем, что напыление кластерного подслоя проводят одновременно с двух мишеней, состоящих из материала электрода с электронной проводимостью и материала твердого электролита с ионной проводимостью в соотношении по массе от 12:1 до 8:1.



 

Похожие патенты:
Изобретение относится к высокотемпературным электрохимическим устройствам различного назначения. .

Изобретение относится к электрохимическим устройствам и применяется в источниках электрической энергии на основе высокотемпературных твердооксидных топливных элементов.

Изобретение относится к области химических источников энергии (электрического тока) с прямым преобразованием химической энергии в электрическую. .

Изобретение относится к узлу соединения в высокотемпературном электрохимическом устройстве. .
Изобретение относится к области прямого получения электроэнергии из природного топлива, а именно к области высокотемпературных топливных элементов. .
Изобретение относится к энергетике, прямому преобразованию химической энергии в электрическую, и может быть использовано в электрохимии для измерения составов сред в качестве измерительного преобразователя концентрации окислителя или восстановителя в среде.
Изобретение относится к области высокотемпературных электрохимических устройств с твердым кислородионным электролитом и может быть использовано в качестве электролизера, топливного элемента или другого аналогичного устройства.
Изобретение относится к области высокотемпературных электрохимических устройств с твердым кислородионным электролитом и может быть использовано в качестве электродов при создании электролизеров, топливных элементов и других устройств.

Изобретение относится к высокотемпературным топливным элементам, в частности к твердооксидным топливным элементам. .

Изобретение относится к штабелю (10) высокотемпературных топливных элементов, стягиваемому с помощью временного стягивающего устройства, также к способу временной затяжки штабеля (10) топливных элементов и к способу удаления временного стягивающего устройства (12-22) для штабеля (10) высокотемпературных топливных элементов.

Изобретение относится к электрохимическим устройствам и применяется в источниках электрической энергии на основе высокотемпературных твердооксидных топливных элементов

Изобретение относится к области водородной энергетики и представляет собой способ изготовления твердооксидных топливных элементов

Изобретение относится к области твердотельных электрохимических устройств

Изобретение относится к области электротехники, в частности, к многослойному покрытию, предназначенному для защиты металлов и сплавов от окисления при высоких температурах, которое может быть использовано в качестве покрытия для нанесения на соединительные материалы в твердооксидных электролитических устройствах, в том числе твердооксидных топливных элементах (ТОТЭ) и твердооксидных электролизерах (ТОЭ)

Изобретение относится к конструкции батарей твердооксидных топливных элементов (ТОТЭ), и более конкретно к конструкциям батарей элементов указанного типа, состоящим из металлических несущих трубчатых решеток с внутренними мембранами в виде топливных элементов

Изобретение относится к способу получения многослойной барьерной структуры в батарее твердооксидных элементов и к многослойной структуре, получаемой таким способом

Изобретение относится к композиционному материалу, пригодному для применения в качестве материала электрода твердооксидного элемента, в частности в твердооксидных топливных элементах или в твердооксидных электролизерных элементах
Изобретение относится к твердооксидным топливным элементам (ТОТЭ)

Изобретение относится к высокотемпературным электрохимическим устройствам (ЭХУ) с твердым электролитом, точнее к конструкции элемента этих устройств, к конструкции батареи любого ЭХУ, способу изготовления элемента данной конструкции и формы для реализации способа
Наверх