Способ измерения газовыделения материалов в вакууме

Изобретение относится к области испытания материалов в условиях вакуума применительно к определению скорости обезгаживания испытуемых материалов. Способ включает размещение образца материала в измерительном объеме вакуумной системы со средствами откачки, вакуумирование измерительного объема до заданного давления разрежения, измерение скорости роста давления в измерительном объеме и анализ остаточного газа в нем, причем после достижения заданного давления разрежения перед измерением скорости роста давления измерительный объем герметично отделяют от средств откачки, а перед каждым последующим измерением его уменьшают пропорционально уменьшению скорости роста давления в предыдущем измерении. Достигается расширение динамического диапазона и повышение точности измерений скорости газовыделения на конечном этапе обезгаживания материала. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к области испытаний материалов в условиях вакуума, при котором происходит так называемое обезгаживание материала, т.е. удаление частиц газа, как с поверхности материала, так и из его внутреннего объема. При этом важными являются количественные характеристики этого процесса - общая потеря массы, содержание летучих конденсирующихся веществ и кинетика массовыделения.

Известен способ измерения газовыделения материалов путем определения потерь массы и содержания летучих конденсирующихся веществ при вакуумно-тепловом воздействии (ГОСТ Р 50109-92). Сущность метода заключается в вакуумном воздействии при определенной температуре на образцы материалов, помещенные в специальные изотермические контейнеры, и в улавливании выделившихся из образцов летучих конденсирующихся веществ охлажденными поверхностями. Потерю массы определяют по разности масс образца и конденсирующей пластины до и после эксперимента.

Данный способ обеспечивает приемлемую точность измерения интегральных параметров газовыделения, а именно - общей потери массы и содержания летучих конденсирующихся веществ, однако для измерения, например, зависимости скорости газовыделения от времени, данный метод непригоден. Это связано с тем, что 1) не все продукты газовыделения осаждаются на охлаждаемых поверхностях и 2) в процессе обезгаживания материала скорость газовыделения может изменяться на несколько порядков величины. Как следствие, точность измерения скорости газовыделения на конечных этапах обезгаживания резко падает, что не позволяет получить достоверные оценки измеряемых параметров.

Наиболее близким техническим решением является способ измерения газовыделения материалов в вакууме, включающий размещение образца материала в измерительном объеме вакуумной системы со средствами откачки, вакуумирование измерительного объема до заданного давления разрежения, измерения скорости роста давления в измерительном объеме и анализ остаточного газа в нем (Нусинов М.Д. Воздействие и моделирование космического вакуума. - М.: Машиностроение, 1982. - С.79).

Данный способ позволяет фиксировать все летучие вещества, однако динамический диапазон данного метода недостаточен для надежного измерения скорости газовыделения на конечных этапах обезгаживания, что связано с ограничениями по чувствительности и точности средств измерения низких давлений (вакуума).

Целью предложенного решения является расширение динамического диапазона и повышение точности измерений скорости газовыделения на конечном этапе обезгаживания материала.

Указанная цель достигается тем, что в способе измерения газовыделения материалов в вакууме, включающем размещение образца материала в измерительном объеме вакуумной системы со средствами откачки, вакуумирование измерительного объема до заданного давления разрежения, измерения скорости роста давления в измерительном объеме и анализ остаточного газа в нем, после достижения заданного давления разрежения перед измерением скорости роста давления измерительный объем герметично отделяют от средств откачки, а перед каждым последующим измерением его уменьшают пропорционально уменьшению скорости роста давления в предыдущем измерении.

Предпочтительно при этом, что уменьшение измерительного объема производят до уровня, при котором для данного измерения отношение максимального значения измеряемого давления к заданному давлению разрежения находится в диапазоне 2…10.

На фиг.1 представлена конструктивная схема вакуумной системы со средствами откачки и измерительным объемом.

На фиг.2 представлены графики роста давления в измерительном объеме по времени.

Вакуумная система (фиг.1) включает измерительный объем в виде герметизируемой вакуумной камеры 1 с размещенным в ней образцом материала 2, средства откачки 3 и вакуумный затвор 4. Объем камеры регулируется с помощью подвижного элемента 5. Измерение давления в камере осуществляется вакуумметром 6. Состав продуктов газовыделения определяется с помощью масс-спектрометра 7.

Рост давления в измерительном объеме является линейной функцией времени (фиг.2). Кривая 8 показывает изменение давления при максимальной скорости газовыделения материала, кривая 9 - при минимальной, а кривые 10, 11, 12 - при промежуточных значениях скорости газовыделения.

Измерение скорости газовыделения производится следующим образом.

Образец материала 2 помещают в камеру 1. Откачивают камеру до заданного давления разряжения Рнач. Герметизируют камеру с помощью затвора 4. После герметизации периодически измеряют давление в камере. Началу измерений соответствует момент времени tнач. Измерения прекращают в момент времени tкон, наступающий после достижения максимального давления Рмакс или после превышения максимального времени измерения tмакс. По измеренным значениям начального (Рнач) и конечного (Ркон) давления рассчитывают скорость роста давления в камере

Скорость газовыделения gm рассчитывают по формуле

где Т - температура газа (К); Vк - объем камеры (м3); mа - средняя атомная масса продуктов газовыделения молекул газа (кг); k - постоянная Больцмана (Дж/К). Средняя атомная масса продуктов газовыделения mа определяется по результатам масс-спектрометрических измерений. За температуру газа Т принимается температура стенок камеры.

Погрешность определения скорости газовыделения определяется, в основном, погрешностью измерения скорости роста давления b.

Наименьшая погрешность измерений достигается при скорости роста давления

При b>bопт погрешность измерений возрастает из-за ограниченного быстродействия вакуумметра, а при b>bопт - за счет роста погрешности измерения давления.

Для снижения погрешности измерений объем камеры корректируют в зависимости от результатов измерения скорости роста давления.

Если измеренная величина скорости роста давления окажется больше значения , объем камеры увеличивают до значения

где Vk,макс - максимально возможный объем камеры.

Если измеренная величина скорости роста давления окажется меньше значения , объем камеры уменьшают до значения

где Vk,мин - минимально возможный объем камеры.

Минимальное время измерений (tмин) ограничено быстродействием вакуумметра, максимальное (tмакс) - постоянной времени процесса газовыделения.

Начальное давление в камере (Рнач) определяется, с одной стороны, нижним пределом измерения вакуумметра, с другой - производительностью системы откачки и скоростью газовыделения образца. Минимальное давление (Рмин) должно быть не меньше 2×Рнач с тем, чтобы погрешность измерения изменения давления была не хуже измерения абсолютной величины давления к камере. Максимальное давление в камере (Pмакс) не должно превышать (5-10)×Рмин, поскольку при увеличении давления в камере возрастает роль десорбции частиц на поверхности образца и стенках камеры, что снижает достоверность и точность измерений.

Таким образом, отношение измеряемого давления к заданному значению разрежения должно находиться в диапазоне 2…10.

В качестве примера рассмотрим установку для измерения скорости газовыделения конструкционных материалов космического назначения.

Характерные значения относительной скорости газовыделения этих материалов (здесь Mобр - масса образца) находятся в диапазоне 10-3…10+2 ppm/ч (ppm - миллионная доля массы образца). Постоянная времени процесса газовыделения при нормальной температуре составляет 10-50 часов. Средняя атомная масса продуктов газовыделения составляет ~30 а.е.м.

Для измерения давления предпочтительно использовать вакуумметры мембранного типа, обладающие высокой чувствительностью и точностью абсолютных измерений давления. Нижний предел измерения этих приборов обычно составляет 10-4 мм рт.ст. при погрешности около 0.1%. Минимальное время измерения составляет около 1 с.

Исходя из этого примем, что Рнач=10-4 мм рт.ст., Рмин=2×Рнач Рмакс=10×Рнач, tмин=10 с, tмакс=1000 с.

Оптимальная скорость роста давления в этом случае составит

Минимальная скорость роста давления

Максимальная скорость роста давления

Зададимся объемом камеры, равным 10 л. Тогда соответствующие значения скорости газовыделения при температуре стенок камеры 300 К согласно формуле (2) составят

gm,опт≈10-11 кг/с.

gm,мин≈10-12 кг/с.

gm,макс≈10-9 кг/с.

При указанных выше значениях относительной скорости газовыделения для проведения измерений потребует образец массой

Минимальная относительная скорость газовыделения, которая может быть измерена без потери точности, при такой массе образца составит

При снижении относительной скорости газовыделения будет происходить уменьшение точности измерений пропорционально отношению . Для компенсации потерь точности объем измерительной камеры следует уменьшить пропорционально уменьшению скорости газовыделения (применительно к рассмотренному примеру с 10 л до 100 см3, т.е. в 100 раз). В этом случае точность измерений останется неизменной во всем диапазоне значений скорости газовыделения.

Таким образом, использование рассмотренного выше технического решения позволяет расширить динамический диапазон и проводить измерения скорости газовыделения на конечных этапах обезгаживания без снижения точности.

1. Способ измерения газовыделения материалов в вакууме, включающий размещение образца материала в измерительном объеме вакуумной системы со средствами откачки, вакуумирование измерительного объема до заданного давления разрежения, измерение скорости роста давления в измерительном объеме и анализ остаточного газа в нем, отличающийся тем, что после достижения заданного давления разрежения перед измерением скорости роста давления измерительный объем герметично отделяют от средств откачки, а перед каждым последующим измерением его уменьшают пропорционально уменьшению скорости роста давления в предыдущем измерении.

2. Способ по п.1, отличающийся тем, что уменьшение измерительного объема производят до уровня, при котором для данного измерения отношение максимального значения измеряемого давления к заданному давлению разрежения составляет 2…10.



 

Похожие патенты:

Изобретение относится к проведению геохимической разведки перспективных месторождений, например, нефтегазового сырья и может быть использовано для определения газонасыщенности грунта и донных осадков.

Изобретение относится к аналитической химии, точнее к методам количественного определения водорода. .

Изобретение относится к установкам для исследования нефти и может применяться, в частности, в установках для исследования свойств нефти и газа в пластовых условиях.

Изобретение относится к электронной технике, а конкретно к способам изготовления мощных электровакуумных приборов (ЭВП). .

Изобретение относится к устройствам для измерения объема в установках для исследования нефти и газа в пластовых условиях и может быть использовано в нефтедобывающей отрасли на месторождениях с развитым режимом растворенного газа.

Изобретение относится к области аналитического приборостроения, в частности к аналитическим приборам, предназначенным для обнаружения микроконцентраций веществ, и может быть использовано для обнаружения паров взрывчатых веществ (ВВ) на документах, например паспортах, билетах и т.п.

Изобретение относится к методам анализа состава раствора и может быть использовано для определения взаимных растворимости жидкости и сжатых газов. .

Изобретение относится к исследованиям и контролю смазочных материалов и систем смазки и может быть использовано при исследовании процессов аэрации и последующей дегазации любых жидкостей для определения физического состояния жидких сред.

Изобретение относится к лабораторной измерительной технике, более конкретно - к приборам и методам контроля природной среды, веществ, материалов и изделий, и может использоваться в пищевой промышленности

Изобретение относится к способам измерения количественного содержания растворенного газа в нефтепромысловой жидкости и может быть использовано при поиске, добыче, подготовке и транспортировке нефти и воды

Изобретение относится к устройствам для определения количества газов в жидкости, которые, в частности, используются при прямых геохимических методах поисков нефти и газа. Устройство содержит мерный сосуд (1), дополнительный сосуд (2), газоанализатор (3), фильтр (4), каплесборник (5), пневмоклапаны (6, 7), источник газа-носителя и присоединенные к перечисленным технологическим элементам трубопроводы. Мерный сосуд (1) соединен с каплесборником (5), присоединенным через фильтр (4) с газоанализатором (3). В режиме работы «без дополнительного объема» газоанализатор (3) присоединен через пневмоклапаны (6, 7) с мерным сосудом (1). В режиме работы «с дополнительным объемом» газоанализатор (3) присоединен через пневмоклапаны (6, 7) с дополнительным сосудом (2) с источником газа-носителя, соединенным с мерным сосудом (1). Техническим результатом является повышение оперативности, представительности и точности определения газа в жидкости, а также упрощение конструкции. 1 з.п. ф-лы, 2 ил.

Изобретение относится к методам определения свойств микросфер и может быть использовано для измерения газосодержания в индивидуальных микросферах, изучения динамики истечения газа из микросфер и определения разброса давления в партии микросфер. Способ определения давления газа в индивидуальных микросферах заключается в измерении внутреннего диаметра микросферы, помещении ее в вязкую прозрачную среду с последующим разрушением и улавливанием выделившегося газа. Разрушение микросферы осуществляют между двумя прозрачными пластинами, а определение давления производят по отношению объема образовавшегося газового пузырька к внутреннему объему микросферы. Улавливание выделившегося газа производится в вязкой жидкости между прозрачными пластинами, которые устанавливают параллельно, и разрушение микросферы осуществляют между параллельно установленными пластинами. При этом величина зазора между пластинами обеспечивается строго вертикальным перемещением, по крайней мере, одной прозрачной пластины. Заявленное устройство для определения давления газа в индивидуальных микросферах содержит две прозрачные пластины. Причем на нижней пластине расположена капля вязкой прозрачной среды для помещения в нее микросферы. При этом пластины установлены с возможностью вертикального перемещения, по крайней мере, одной из них до обеспечения фиксированного зазора высотой меньше диаметра микросферы. Для обеспечения фиксированного зазора устройство может содержать упоры, расположенные между пластинами, при этом высота упоров меньше диаметра микросферы. Средства для перемещения прозрачных пластин могут быть выполнены в виде установленных на оправе одной из пластин не менее 3-х вертикальных направляющих с пружинами, а в оправе другой пластины выполнены отверстия для движения по направляющим, при этом каждая направляющая снабжена гайкой. В другом варианте устройства внешняя поверхность оправы нижней пластины выполнена цилиндрической и является направляющей для вертикального перемещения верхней пластины. Между оправами установлен пружинный элемент, а перемещение пластины происходит с помощью резьбового соединения. Техническим результатом является определение точного значения давления газа в индивидуальных микросферах при их разрушении одноосным сжатием, определение динамики истечения газа из микросфер в партии, а также определение разброса давления в партии микросфер. 2 н. и 5 з.п. ф-лы, 9 ил., 5 табл., 4 пр.

Изобретение относится к физической химии и электрохимии твердых электролитов и может быть использовано для определения химического коэффициента обмена и химического коэффициента диффузии кислорода в оксидных материалах со смешанной электронной и кислород-ионной проводимостью. Способ включает использование значения давления кислорода над оксидом в замкнутом газовом контуре постоянного объема в качестве параметра оксида, напрямую связанного с изменением количества кислорода в оксиде. Для этого исследуемый образец помещают в реактор, вакуум-плотно соединенный с газовым контуром, изолированным от атмосферы, откачивают газовый контур на высокий вакуум, а для скачкообразного изменения величины давления кислорода над образцом перекрывают вакуум-плотное соединение реактора с газовым контуром, напускают в него или откачивают из него кислород высокой чистоты до значения давления, отличающегося от равновесного, после чего открывают вакуум-плотное соединение реактора с газовым контуром и регистрируют изменение значения давления кислорода над образцом во времени, и расчет химического коэффициента обмена и химического коэффициента диффузии кислорода производят на основании зависимости относительного изменения давления кислорода над оксидом от времени, полученной после смены величины давления кислорода. Техническим результатом является создание возможности мгновенной смены давления кислорода, расширение рабочего диапазона температур для образцов с высокими значениями коэффициентов химического обмена и диффузии, сокращение расхода кислорода по сравнению с проточными системами, достижение высокой точности измерений давления в системе для оксидов с низкими значениями коэффициентов химического обмена и диффузии. 2 ил.

Изобретение относится к физической химии и электрохимии твердых электролитов и может быть использовано для определения концентрации протонов в протон-проводящих оксидных материалах в атмосфере сухого водорода. Способ определения концентрации протонов в протон-проводящих оксидах заключается в том, что образец оксида помещают в реактор, соединенный с газовым контуром, сушат при нагреве до температуры 900÷1000°C. Затем меняют газовую фазу на атмосферу, содержащую водород, регистрируют изменение во времени значения параметра оксида, напрямую связанного с изменением количества протонов в оксиде, достигая состояния равновесия оксида с газовой фазой, и на основании полученного равновесного значения параметра оксида производят расчет концентрации протонов в протон-проводящем оксиде как количества вещества водорода в оксиде, отнесенного к одному молю оксида. При этом в качестве параметра оксида, напрямую связанного с изменением количества протонов в протон-проводящем оксиде, используют значение давления водорода над оксидом в замкнутом газовом контуре постоянного объема, для этого образец помещают в реактор, вакуумплотно соединенный с газовым контуром, изолированным от атмосферы. Далее откачивают газовый контур с реактором на высокий вакуум и сушат образец, выдерживая его при температуре осушки до установления остаточного давления не более 10-7 Па. Затем перекрывают вакуумплотное соединение реактора с газовым контуром, напускают в контур водород высокой чистоты до заданного давления, открывают вакуумплотное соединение реактора с газовым контуром и после мгновенного установления общего давления водорода в системе «реактор-газовый контур» регистрируют изменение значения давления водорода над образцом во времени, достигая состояния равновесия оксида с газовой фазой, и на основании разницы давления водорода, установившегося сразу после открытия вакуумплотного соединения, и полученного равновесного значения давления водорода над образцом производят расчет концентрации протонов в протон-проводящем оксиде. Техническим результатом является повышение степени осушки исследуемых образцов, повышение точности измерения концентрации протонов в атмосфере сухого водорода, а также сокращение расхода водорода. 2 ил.

Изобретение направлено на создание возможности определения скорости межфазного обмена кислорода и скоростей трех типов обмена кислорода с оксидными материалами. Образец исследуемого материала помещают в проточный реактор, пропускают смесь инертного газа с кислородом заданного парциального давления кислорода и после установления равновесия между образцом и газовой фазой при выбранных значениях парциального давления кислорода и температуры. Далее в проточный реактор последовательно подают два и/или более импульсов изотопно-обогащенной смеси разного объема, после прохождения двух и/или более импульсов изотопно-обогащенной смеси разного объема получают две и/или более пары значений изотопного состава импульса изотопно-обогащенной смеси до и после прохождения над образцом при различных временах экспозиции. Затем полученные значения используют для расчета скорости межфазного обмена кислорода и скоростей трех типов обмена кислорода по теории о трех типах обмена кислорода. Техническим результатом является обеспечение возможности получения информации о содержании изотопа в импульсе до и после прохождения импульса, на основании которой становится возможным с большей точностью рассчитать скорость межфазного обмена кислорода и создается принципиальная возможность рассчитать скорости трех типов обмена кислорода. 3 ил.

Изобретение относится к способам измерения количественного содержания растворенного газа, в частности сероводорода, в нефтепромысловой жидкости, находящейся под давлением в выкидной линии скважины, нефтесборном трубопроводе, емкостном оборудовании или водоводе. Способ определения концентрации сероводорода в трубопроводной нефти под давлением заключается в отборе пробы нефти при снижении давления до атмосферного, барботировании этой пробы или ее части с фиксацией выделенного сероводорода химическим методом. Выделяющийся при отборе жидкости ПНГ направляется в газосборную камеру с измерением объема. Массовое количество сероводорода в собранном объеме ПНГ определяется любым приемлемым способом, например колориметрическим способом, пропуская часть ПНГ через индикаторную трубку H2S - 0,0066 по ТУ 12.43.01.166-86. Концентрация сероводорода в отбираемой пробе нефти или иной сероводородсодержащей жидкости определяется по математической формуле путем суммирования массы H2S в жидкой и газообразной фазах пробы и отнесения полученной суммы к объему отобранной пробы жидкости в атмосферных условиях. Техническим результатом является повышение точности измерений количественного присутствия сероводорода в промысловой нефти или воде. 2 ил., 1 табл.

Группа изобретений может быть использована в химической, нефтехимической, пищевой и других отраслях промышленности, в которых процесс протекает при высоком давлении и высокой температуре. Способ определения газонасыщения жидкости может быть использован для контроля гетерогенно-каталитических реакций, протекающих при высоком давлении и температуре, таких, например, - реакции гидрирования, окисления. Способ определения газонасыщения реализуется с помощью устройства, состоящего из пробоотборника и измерительного прибора. Пробоотборник включает в себя входной вентиль 1 точной регулировки, капилляр 2, калибровочную микроемкость 3 и выходной вентиль 4 точной регулировки. Измерительный прибор включает в себя мерную бюретку 5, внутреннюю трубку 6, измерительную трубку 7, вспомогательную емкость 8. Входной вентиль 1 точной регулировки плавно открывают, при этом жидкость, насыщенная газом, через капилляр 2 заполняет калибровочную микроемкость 3. Входной вентиль закрывают и плавно открывают выходной вентиль точной регулировки, жидкость под собственным давлением вытекает и попадает в мерную бюретку 5 измерительного прибора. При дросселировании жидкости происходит разделение пробы на газовую и жидкую составляющие и снижение температуры пробы до комнатной. Выделившийся из жидкости газ поступает через внутреннюю трубку 6 в верхнюю часть измерительной трубки 7 и выдавливает запорную жидкость из кольцевого пространства во вспомогательную емкость 8. По разности исходного и конечного уровней запорной жидкости определяют объем газовой составляющей, а объем жидкости измеряют в мерной бюретке. Обеспечивается упрощение конструкции устройства и способа отбора проб, повышение точности определения количества растворенного газового компонента в жидком реагенте, находящемся под высоким давлением, точности определения жидкой компоненты пробы, возможность контроля скорости протекания реакции. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области измерительной техники и может быть использовано для оперативного контроля в технологии испытания электрогидромеханических систем и их агрегатов. Предложенный способ предусматривает вакуумирование пробы исследуемой жидкости, перемещение газа через газопроницаемую мембрану в газосборную полость с последующим измерением его объема и давления. Устройство определения содержания свободного газа в жидкости представляет собой систему двух взаимосвязанных полостей, разделенных газопроницаемой мембраной. Изменение объемов полостей достигается взаимоувязанным движением поршней. Расчет содержания свободного газа в жидкости производится по известным зависимостям. Технический результат - снижение трудоемкости процесса контроля пробы, технического обслуживания устройства, а также исключение применения дополнительных реагентов в процессе контроля. 2 н.п. ф-лы, 1 ил.
Наверх