Способ определения нелинейности выходной характеристики акселерометра

Изобретение относится к измерительной технике и может быть использовано для измерения нелинейности выходной характеристики акселерометров. Способ заключается в установке эталонного акселерометра на вибростенде вместе с тестируемым и измерении разности выходных сигналов акселерометров, которая минимизируется при помощи регулирования амплитуды сигнала тестируемого акселерометра, фильтруется. Нелинейность выходной характеристики тестируемого акселерометра определяется отношением среднеквадратичного значения напряжения фильтрованного сигнала к среднеквадратичному значению напряжения сигнала эталонного акселерометра. Изобретение позволяет расширить диапазон измерения нелинейности на вибростенде. 1 ил.

 

Изобретение относится к измерительной технике и может быть использовано для измерения нелинейности выходной характеристики акселерометров.

Известен способ [1], который применяется для измерения нелинейности характеристик акселерометров в поле силы тяжести, что ограничивает возможности измерения диапазоном ±1g, предназначений для измерения нелинейности выходной характеристики компенсационных акселерометров (нелинейности акселерометров), и не может быть применен для ее измерения у акселерометров прямого преобразования.

Наиболее близким по технической сущности является известный способ [2], который также применяется для измерения нелинейности характеристик акселерометров в поле силы тяжести, что ограничивает возможности измерения диапазоном ±1g. При этом использование центирфуги во много раз повышает стоимость измерения и вносит погрешности при измерениях акселерометров прямого преобразования, связанные со смещением центра масс чувствительного элемента акселерометра при воздействии на него центростремительного ускорения.

Измерение нелинейности связано с измерением коэффициентов гармоник сигнала, поэтому применение вибростендов для калибровки акселерометров не позволяет измерять малые (<1%) нелинейности, поскольку в вибростенде преобразование тока в ускорение вносит свою нелинейность.

Задача предлагаемого способа - расширение диапазона измерения нелинейности на вибростенде.

Данная задача решается тем, что на вибростенде вместе с тестируемым устанавливается эталонный акселерометр с низкой нелинейностью выходной характеристики. Разность выходных сигналов акселерометров, минимизированная при помощи регулирования амплитуды сигнала тестируемого акселерометра фильтруется, при этом нелинейность выходной характеристики тестируемого акселерометра определяется отношением среднеквадратичного значения напряжения фильтрованного сигнала к среднеквадратичному значению напряжения сигнала эталонного акселерометра.

Изобретение иллюстрируется чертежом

На чертеже приведена блок-схема устройства, предназначенного для реализации предложенного способа, где

1 - генератор гармонических сигналов;

2 - вибростенд;

3 - эталонный акселерометр;

4 - тестируемый акселерометр;

5, 7 - входы разностного устройства;

6 - разностное устройство;

8, 11 - среднеквадратичный вольтметр;

9 - выход разностного устройства;

10 - фильтр низкой частоты.

Устройство для реализации предлагаемого способа, структурная схема которого представлена на чертеже, включает в себя генератор гармонического сигнала 1, выход которого подключен ко входу вибростенда 2. На вибростенде 2 механически закрепляются эталонный акселерометр 3 и тестируемый акселерометр 4. Выходной сигнал с тестируемого акселерометра 4 подается на вход 5 разностного устройства 6. Выходной сигнал с эталонного акселерометра 3 подается на вход 7 разностного устройства 6 и на вход среднеквадратичного вольтметра 8. Сигнал с выхода 9 разностного устройства 6 фильтруется фильтром низких частот 10 и поступает на вход среднеквадратичного вольтметра 11.

Предлагаемый способ измерения нелинейности акселерометров реализуется за счет использования вибростенда и эталонного акселерометра, закрепленного на вибростенде вместе с тестируемым. Выходная характеристика акселерометра - это зависимость выходного напряжения от приложенного к оси чувствительности акселерометра ускорения. В предлагаемом способе прилагаемое ускорение задается при помощи вибростенда и регулируется частотой и(или) амплитудой тока генератора синусоидального сигнала. Поскольку преобразование выходного тока генератора в ускорение вибростенда носит нелинейный характер, то присутствие неосновных гармоник в спектре выходного сигнала тестируемого акселерометра нельзя считать следствием его нелинейности, а следует считать следствием суммирования нелинейностей вибростенда и тестируемого акселерометра. Для того чтобы измерить нелинейность, вносимую вибростендом, используется эталонный акселерометр с пренебрежимо малым коэффициентом нелинейности выходной характеристики. Вычитание из выходного сигнала тестируемого акселерометра выходного сигнала эталонного дает представление о нелинейности характеристики тестируемого акселерометра. Выходные сигналы акселерометров нормируются минимизацией разностного сигнала путем регулирования амплитуды выходного сигнала тестируемого акселерометра. Полученный таким образом разностный сигнал фильтруется для исключения из его спектра малозначимых гармонических составляющих, в том числе шумов и помех. Спектр отфильтрованного сигнала составляют гармоники, обусловленные нелинейностью тестируемого акселерометра, которая равна среднеквадратичному значению напряжения фильтрованного сигнала. Нелинейность акселерометра определяется отношением среднеквадратичного значения напряжения фильтрованного сигнала к среднеквадратичному значению напряжения сигнала эталонного акселерометра.

Для проверки данного способа был собран макет устройства (чертеж). В качестве генератора гармонических сигналов 1 был взят генератор многофункциональный Tektronix AFG3021, вибростенд 2 типа 4809 фирмы Bruel&Kjear, эталонный акселерометр 3 - акселерометр AT1112 ОАО «ТЕМП-АВИА», тестируемый акселерометр 4 - разрабатываемые в МИЭТ микроэлектромеханические акселерометры АМЭМ; разностное устройство 6 и фильтр низких частот 10 разработаны на операционных усилителях ОР7727 Analog Devices; в качестве среднеквадратчиных вольтметров 8,11 были взяты мультиметры 34401А фирмы Agilent.

На генераторе 1 установили частоту 70 Гц. Изменяя амплитуду сигнала, добились, чтобы вольтметр 8 показал напряжение, соответствующее ускорению 1g (при этом фактическая амплитуда выходного сигнала акселерометра 3 больше, чем показывает вольтметр 8 в 21/2 раза). Отношение показаний вольтметра 11 к показаниям вольтметра 8 дало численное значение нелинейностей выходной характеристики тестируемых акселерометров.

Для испытаний были выбраны акселерометры АМЭМ, рассчитанные на диапазон ускорений ±1g, поскольку измерения коэффициента нелинейности также были проведены и на делительной головке путем съема выходной характеристики и математическим подсчетом ее нелинейности. Показания, которые были получены с применением предложенного способа, были сопоставимы со значением нелинейности выходной характеристики, полученной при помощи делительной головки.

Источники информации

1. Авторское свидетельство СССР №1028164. Способ определения нелинейности характеристики компенсационного акселерометра.

2. Авторское свидетельство СССР №934807. Способ определения нелинейности маятникового акселерометра на центрифуге (прототип).

Способ определения нелинейности выходной характеристики акселерометра, включающий размещение тестируемого акселерометра вместе с эталонным акселерометром на вибростенде, отличающийся тем, что разность выходных сигналов акселерометров, минимизированная при помощи регулирования амплитуды сигнала тестируемого акселерометра, фильтруется, при этом нелинейность выходной характеристики тестируемого акселерометра определяется отношением среднеквадратичного значения напряжения фильтрованного сигнала к среднеквадратичному значению напряжения сигнала эталонного акселерометра.



 

Похожие патенты:

Изобретение относится к измерительной технике и технике воздухоплавания, а именно к измерителям параметров полета летательного аппарата (ЛА), и может быть использовано в летных испытаниях летательного аппарата для определения действительных значений воздушных параметров и оценки средств определения воздушных параметров ЛА.

Изобретение относится к области измерений ускорения или импульсов ускорения при наличии направления движения и может быть использовано для тарировки и поверки приборов и устройств, а именно акселерометров.

Изобретение относится к измерительной технике и может быть использовано для измерения ускорений, вызываемых колебаниями основания, на котором установлен трехкоординатный акселерометр.

Изобретение относится к измерительной технике, а именно к измерителям высотно-скоростных параметров (ВСП) полета, и может быть использовано в летных испытаниях летательной техники в части определения и оценки погрешностей измерения ВСП.

Изобретение относится к калибровке спидометра велокомпьютера посредством устройства для ввода в велокомпьютер (3) данных о размере колеса велосипеда. .

Изобретение относится к системам диагностики приборов и устройств комплексов вооружения, имеющих в своем составе датчики скорости ветра. .

Изобретение относится к области приборостроения, в частности для оценки амплитудно-частотных и фазово-частотных характеристик датчиков угловых скоростей при необходимости их использования в навигационных приборах и других приборах управления.

Изобретение относится к области измерения и может быть использовано для настройки и калибровки акселерометров и приборов, содержащих акселерометры. .

Изобретение относится к области измерения и может быть использовано для настройки и калибровки акселерометров и приборов, содержащих акселерометры. .

Изобретение относится к способу калибровки масштабного коэффициента осесимметричного вибрационного гиродатчика угловой скорости, работающего при подаче сигнала (СА) управления амплитудой и сигнала (СР) управления прецессией на вибратор (1), совершающий колебания с заданной частотой

Изобретение относится к малогабаритным вибрационным датчикам угловой скорости (ДУС), в частности к производству и технологии балансировки пьезоэлектрического балочного биморфного чувствительного элемента ДУС

Изобретение относится к способу и устройству для возбуждения волн в стержнях с целью калибровки датчиков ускорения и датчиков силы, в частности, с большими амплитудами

Изобретение относится к контрольно-измерительной технике и может применяться для поверки класса измерителей скорости (ИС) движения транспортных средств (ТС), использующих видеокамеру

Изобретение относится к измерительной технике и предназначено для калибровки термоанемометрических датчиков скорости потока жидкости и может быть использовано для повышения информативности геофизических исследований скважин, проводимых с применением термоанемометрических датчиков

Изобретение относится к технике электрической связи и может быть использовано в системах контроля, управления и защиты грузоподъемных машин

Изобретение относится к области приборостроения, в частности к измерительной технике, и может быть использовано для оценки амплитудно-частотных и фазово-частотных характеристик датчиков угловых скоростей при необходимости их использования в навигационных приборах и других приборах управления

Изобретение относится к области точного приборостроения и может быть использовано при изготовлении маятниковых компенсационных акселерометров (МКА)

Изобретение относится к области приборостроения бесплатформенных инерциальных систем ориентации и навигации летательных аппаратов, морских и наземных подвижных объектов, внутритрубных инспектирующих снарядов магистральных трубопроводов и других подвижных объектов

Изобретение относится к измерительной технике, а именно к устройствам, предназначенным для установки и предварительной оценки заявленных технических характеристик приборов для измерения угловой скорости и углового положения. Технический результат - создание с минимальными затратами устройства для крепления и предварительной оценки параметров измерительного прибора, предназначенного для использования в различных областях техники с целью измерения, контроля угловой скорости вращения и углового положения в инерциальном пространстве, с обеспечением требуемой минимальной точности осевого перемещения. Достигается тем, что устройство для крепления и предварительной оценки параметров измерительного прибора содержит неподвижное основание, оборудованное устройством горизонтирования, на котором установлено основание, выполненное в виде вертикальной рамочной стойки, оснащенной плоской установочной площадкой, плоскость прилегания которой совпадает с осью симметрии основания, которая в свою очередь совпадает с осью симметрии измерительного прибора. В нижней части стойки жестко закреплен стержень в виде оси, оснащенной в своей центральной части упорным буртиком, а в верхней части стойки 3 выполнено установочное отверстие для размещения угломерного оптического прибора и перпендикулярно ему - резьбовое отверстие для винтового фиксатора. Упорный буртик в нижней части оснащен фаской, имеющей аналогичный профиль с фаской, выполненной в установочном отверстии неподвижного основания. 3 ил.
Наверх