Датчик ночной облачности

Изобретение относится к метеорологическим приборам и может быть использовано для обеспечения работы наземных оптических средств и астрономических установок в автоматическом режиме. Устройство содержит объектив, телевизионную камеру, блок накопления кадров и вычитания фона, блок запоминания звездного каталога. В датчик дополнительно введены формирователь телевизионного массива звезд, формирователь каталожного массива звезд, блок отождествления звезд, вычислитель прозрачности атмосферы, формирователь зон облачности. Вычисление ночной прозрачности атмосферы осуществляется с помощью отождествления блеска телевизионных и каталожных звезд. Технический результат - обеспечение работы датчика в автоматическом режиме, повышение объективности и точности оценки ночной облачности. 3 ил.

 

Изобретение относится к метеорологическим приборам, оценивающим ночную прозрачность атмосферы и соответственно состояние облачности в ночное и сумеречное время во всей небесной полусфере и обеспечивающим работу наземных оптических средств и астрономических установок, осуществляющих наблюдение искусственных и естественных небесных тел в автоматическом режиме.

Известны датчики облачности, содержащие метеорологический лазер, объектив, приемник излучения, механизм наведения с приводами и датчиками положения осей [см. Зуев В.Е. Лазер-метеоролог. Л.: Гидрометеоиздат, 1974, стр.96-112; Vaisala LD-40 Ceilometer. Рекламный листок. Фирма VAISALA (Финляндия), www.vaisala.com]. Наличие в составе датчика метеорологического лазера усложняет его конструкцию и повышает энергопотребление. Датчик хорошо работает по низковысотной составляющей облачного покрова, важной для авиации, при контроле высоких облаков его работоспособность снижается.

Наиболее близким аналогом к заявляемому техническому решению является устройство [см. Комаров В.В., Фоменко А.Ф., Шергин B.C. ТВ-система «ВСЕ НЕБО» для мониторинга ночной облачности. «Прикладная физика», 2007, №5, стр.130-133], осуществляющее контроль состояния ночной облачности в реальном времени во всей небесной полусфере. Устройство содержит расположенные последовательно на визирной оси объектив с полем зрения 180° и высокочувствительную телевизионную камеру (ТВ-камеру), помещенные в корпус. Видеосигнал с ТВ-камеры поступает на вход блока накопления кадров, где из него вычитается темновой фон и исключаются геометрические искажения. Полученное телевизионное изображение, содержащее информацию о протяженных объектах (например, облаках, подсвеченных Луной), и точечных объектах (телевизионных звездах), поступает в формирователь видеосюжета, где на него накладываются изображения координатной сетки, конфигурации созвездий и положение основных звезд из блока запоминания звездного каталога. Информация об облаках, телевизионных звездах с наложенной сеткой, каталожными созвездиями и основными каталожными звездами выводится на экран дисплея. Оценку ночной облачности производит оператор визуально с учетом своего знания, опыта и других личностных факторов.

Обязательное участие оператора в оценке ночной облачности вносит элемент субъективности и снижает точность оценки. Кроме того, наметившийся в астрономии переход на «интеллектуальные» телескопы и «телескопы-роботы» минимизирует или полностью исключает участие человека в астрономических наблюдениях. Это снижает возможности применения известного устройства в автоматических средствах.

Задачей заявляемого изобретения является создание прибора, способного формировать данные о зонах облачности ночного неба без участия оператора.

Технический результат - обеспечение работы датчика в автоматическом режиме, повышение объективности и точности оценки ночной облачности.

Это достигается тем, что датчик ночной облачности, содержит расположенные последовательно на визирной оси объектив и телевизионную камеру и, вне визирной оси, блок запоминания звездного каталога. Выход камеры связан с входом блока накопления кадров и вычитания фона. Датчик снабжен формирователем телевизионного массива звезд, формирователем каталожного массива звезд, блоком отождествления звезд, вычислителем прозрачности атмосферы и формирователем зон облачности. Выход блока накопления кадров и вычитания фона связан с входом формирователя телевизионного массива звезд. Выход блока запоминания звездного каталога связан с входом формирователя каталожного массива звезд. Выходы формирователей телевизионного и каталожного массивов звезд соединены с входами блока отождествления звезд. Блок отождествления звезд подключен к вычислителю прозрачности атмосферы, выход которого соединен с формирователем зон облачности.

На фиг.1 схематично изображен датчик ночной облачности, на фиг.2 - временная диаграмма сигналов на выходе ТВ-камеры и блока накопления кадров и вычитания фона, на фиг.3 - фрагменты сюжетов: а) на выходе формирователя телевизионного массива звезд, б) на выходе формирователя каталожного массива звезд, в) на выходе блока отождествления звезд, г) на выходе вычислителя коэффициента ночной прозрачности атмосферы, д) на выходе формирователя зон облачности.

Датчик ночной облачности содержит расположенные на визирной оси объектив 1, например, типа «рыбий глаз» (фиг.1) и ТВ-камеру 2, например, типа Peregrine 486 BI, реализованную на ПЗС-матрице формата 4096×4096 при размере пикселя 15×15 мкм. Объектив и ТВ-камера установлены в корпусе 3. К выходу ТВ-камеры 2 подключен блок накопления кадров и вычитания фона 4, к выходу блока 4 подключен формирователь телевизионного массива звезд 5. Кроме того, вне визирной оси, в датчике имеется блок 6 запоминания звездного каталога. Блок 6 своим выходом подключен к формирователю 7 каталожного массива звезд. Выходы формирователей 5 и 7 соединены со входами блока 8 отождествления звезд, который в свою очередь подключен к вычислителю прозрачности атмосферы 9, выход которого соединен с формирователем зон облачности 10. Формирователи 5, 7, 10, блоки 6, 8, вычислитель 9 могут быть выполнены, например, на базе программируемых логических интегральных схем (ПЛИСов).

На фиг.2 приняты следующие обозначения: U2 - сигналы на выходе ТВ-камеры 2, U4 - сигналы на выходе блока накопления кадров и вычитания фона 4, где t - текущее время.

На фиг.3 приняты следующие обозначения: 11 - изображения телевизионных и каталожных звезд на выходе формирователей 5, 7; 12 - изображения отождествившихся звезд на выходе блока 8; 13 - изображения неотождествившихся звезд на выходе блока 8; 14 - точки (направления) на небесной сфере, в которых прозрачность атмосферы не ослаблена облачностью; 15 - точки на небесной сфере, в которых прозрачность атмосферы частично ослаблена облачностью; 16 - точки на небесной сфере, в которых из-за сильной облачности атмосфера непрозрачна; 17 - зона без облачности; 18 - зона со слабой облачностью; 19 - зона с сильной облачностью.

Датчик работает следующим образом. Объектив 1 формирует оптическое изображение небесной полусферы на входе ТВ-камеры 2. С выхода ТВ-камеры 2 поступают телевизионные сигналы U2, содержащие сигналы от космических объектов (звезды, планеты и др.), сигналы от распределенного фона (лунный, сумеречный и др.) и помехи (тепловые шумы, шумы считывания и др.). В блоке 4 эти сигналы накапливаются и обрабатываются, из них вычитается темновой фон. Обработанные сигналы U4 поступают на вход формирователя 5, где исключаются сигналы от протяженных объектов и формируется телевизионный массив обнаруженных звезд, например, в виде списка или в виде сюжетов, как показано на фиг.3. Массив содержит привязанную ко времени информацию об измеренных небесных координатах звезд и их измеренном блеске (в пространственном виде информация о телевизионных звездах представлена в сюжете 3а). Одновременно в формирователе каталожного массива звезд 7 на основании данных, поступающих из блока 6, для этого же момента времени формируется каталожный массив звезд, например, также в виде списка. Массив содержит информацию о каталожных небесных координатах звезд и их каталожном блеске (сюжет 3б). При этом в каталожный массив отбираются только те звезды, блеск которых не меньше чувствительности датчика на момент получения телевизионного массива. Сюжеты 3а и 3б подаются в блок 8, где производится отождествление звезд. Отождествление выполняется, например, за счет сравнения измеренных и каталожных небесных координат звезд. Если разница в измеренных и каталожных небесных координатах не превышает заданный порог, то телевизионная звезда отождествляется с данной каталожной звездой (сюжет 3в).

Информация об отождествившихся парах звезд и неотождествившихся каталожных звездах поступает в вычислитель 9, где, например, путем сравнения измеренного и каталожного блесков вычисляется коэффициент ночной прозрачности атмосферы в направлении отождествившихся каталожных звезд. В направлении неотождествившихся каталожных звезд коэффициент ночной прозрачности атмосферы принимается равным нулю. В сюжете 3г коэффициент ночной прозрачности атмосферы kн разбит на три градации: kн=0,7 (облака отсутствуют), kн=0,07 (слабая облачность), kн=0 (сильная облачность). На практике количество и значение градаций выбирают в зависимости от конкретной решаемой задачи. С вычислителя 9 сигналы поступают в формирователь зон ночной облачности 10. В формирователе через граничные точки, например, с одинаковым коэффициентом прозрачности либо через вновь вычисленные точки (в сюжете 3д не показаны) проводятся изолинии. Вновь вычисленные точки могут представлять собой, например, середины отрезков, соединяющих обмеренные точки с разными коэффициентами прозрачности, т.е изолиния проводится посередине между этими точками.

Информация о ночной прозрачности атмосферы и зонах облачности, полученная без участия оператора, может быть использована для автоматического управления оптическим средством или астрономическим телескопом.

Таким образом, наличие в датчике ночной облачности новых блоков и новых связей между блоками по сравнению с известными позволяет обеспечить работу датчика в автоматическом режиме, повышает объективность и точность оценки ночной облачности.

Датчик ночной облачности, содержащий расположенные последовательно на визирной оси объектив и телевизионную камеру, выход которой связан с входом блока накопления кадров и вычитания фона и, вне визирной оси, блок запоминания звездного каталога, отличающийся тем, что датчик снабжен формирователем телевизионного массива звезд, формирователем каталожного массива звезд, блоком отождествления звезд, вычислителем прозрачности атмосферы и формирователем зон облачности, причем выход блока накопления кадров и вычитания фона связан с входом формирователя телевизионного массива звезд, а выход блока запоминания звездного каталога со входом формирователя каталожного массива звезд, а выходы формирователей телевизионного и каталожного массивов звезд соединены со входами блока отождествления звезд, который, в свою очередь, подключен к вычислителю прозрачности атмосферы, выход которого соединен с формирователем зон облачности.



 

Похожие патенты:

Изобретение относится к области гидрометеорологии и может быть использовано для определения характеристик морских ветровых волн. .

Изобретение относится к области метеорологии и может быть использовано для определения прозрачности атмосферы. .

Изобретение относится к гидрометеорологии, а более конкретно для измерения гидрометеорологических параметров посредством средств регистрации, размещенных на буях.

Изобретение относится к измерительной технике и м зжет найти применение при измерении метеорологических параметров. .

Изобретение относится к области метеорологии и может быть использовано при определении характеристик атмосферы

Изобретение относится к области метеорологического приборостроения

Изобретение относится к области метеорологии и может быть использовано для дистанционного контроля прироста толщины снежного покрова на лавиноопасных склонах

Изобретение относится к области океанографии и может быть использовано для определения характеристик морских ветровых волн

Изобретение относится к области метеорологии, а более конкретно - к способам определения характеристик слабо рассеивающей атмосферы. Согласно способу осуществляют посылку в атмосферу световых импульсов из точек, разнесенных в пространстве, по пересекающимся трассам зондирования, проходящим по неколлинеарным направлениям. Осуществляют прием эхо-сигналов в точках посылки, осуществляют посылку световых импульсов по дополнительным трассам, каждая из которых пересекает все предыдущие трассы. Общее число трасс - не менее пяти. Характеристики атмосферы определяют по мощностям этих сигналов с использованием расчетных формул. Технический результат - повышение точности определений за счет корректного учета фоновой засветки атмосферы. 1 ил.

Изобретение относится к области метеорологии и касается способа определения общего балла облачности. Для определения общего балла облачности получают цветное полутоновое изображение всего небосвода в видимой области спектра и для всех точек изображения проводят сравнение значений цветовых компонент. Если значение синей компоненты больше значения и красной и зеленой компоненты, то точке присваивается значение «синева неба». Если значение синей компоненты меньше значения или красной или зеленой компоненты, то точке присваивается значение «несинева неба». Общий балл облачности определяется как относительное количество точек изображения, которым присвоено значение «несинева неба». Технический результат заключается в повышении достоверности и точности измерений.

Изобретение относится к экологическим системам сбора и обработки информации и может быть использовано для прогнозирования распространения загрязнения атмосферного воздуха на территории горнопромышленной агломерации. Сущность: система содержит первую (1) и вторую (5) группы быстродействующих датчиков экологического контроля состояния атмосферы, систему GPS, метеостанцию, мобильную телефонную станцию, центральный диспетчерский пункт (4). Причем датчики первой (1) группы для измерения фоновых концентраций химического загрязнения и уровней физического загрязнения атмосферного воздуха устанавливают на стационарных постах. Датчики второй (5) группы для измерения концентраций химического загрязнения и уровней физического загрязнения атмосферного воздуха устанавливают на беспилотных летательных аппаратах (БЛА), совершающих облеты территории горнопромышленной агломерации по заданной программе (6). В случае обнаружения превышения нормативных значений загрязнений датчиками первой (1) группы в места превышения уровня загрязнения направляют БЛА с датчиками второй (5) группы для более детального изучения появившегося загрязнения и прогнозирования траектории его распространения в зависимости от метеопараметров. Технический результат: повышение эффективности прогнозирования возникновения и развития аварийной ситуации. 1 ил.

Изобретение относится к области метеорологии, а более конкретно к способам определения характеристик загрязнения атмосферы, и может быть использовано для измерения прозрачности неоднородной атмосферы лидарными системами при определении аэрозольного загрязнения воздуха. Согласно способу в неоднородную атмосферу излучают световые импульсы малой длительности и принимают эхо-сигналы. Эхо-сигналы корректируют на геометрический фактор лидара. Скорректированные сигналы накапливают в течение заданного промежутка времени в зависимости от общей протяженности исследуемого участка. Отклоняют световые импульсы не менее чем в двух точках трассы зондирования в направлениях на общий рассеивающий объем. Для определения прозрачности атмосферы учитывают оптическую толщину участка, заключенного между точками, в которых отклоняют импульсы. Технический результат - повышение точности определений за счет корректного учета влияющих факторов. 1 ил.

Изобретение относится к области метеорологии и может быть использовано для определения прозрачности атмосферы. Сущность: осуществляют посылку в неоднородную атмосферу световых импульсов малой длительности. Принимают эхо-сигналы. Обеспечивают коррекцию эхо-сигналов на геометрический фактор лидара. Накапливают скорректированные сигналы в течение заданного промежутка времени в зависимости от общей протяженности исследуемого участка. При этом световые импульсы отклоняют не менее чем в двух точках трассы зондирования в обратном направлении. Для определения прозрачности атмосферы измеряют эхо-сигналы импульсов в одной и той же точке трассы зондирования до и после отклонения. Определяют коэффициент ослабления атмосферы по принятым и накопленным эхо-сигналам. Технический результат: повышение точности определения коэффициента ослабления атмосферы. 1 ил.

Изобретение относится к методам исследования физических свойств веществ и, в частности, снежного покрова. Сущность: способ определения пространственно-временной неоднородности снежного покрова в условиях его естественного залегания включает предварительное выполнение шурфа до подстилающей поверхности, определение стратиграфии снежной толщи, введение в толщу покрова в непосредственной близости от стенки шурфа лавинного щупа, регистрацию сигнала акустической эмиссии, возникающего при его перемещении, соотнесение каждому слою снежной толщи характерной формы и модулирующей частоты сигнала акустической эмиссии, последующее введение лавинного щупа в заданной точке снежного покрова и определение стратиграфии в этой точке путем сравнения зарегистрированного в ней сигнала акустической эмиссии с сигналом, полученным для контрольного шурфа. Технический результат: снижение трудозатрат на проведение исследований при сохранении точности измерений. 3 з.п. ф-лы, 2 ил., 1 табл.
Наверх