Способ локальной плазмохимической обработки материала через маску

Изобретение относится к способам общего назначения для обработки материалов с помощью электрической энергии и может быть использовано в технологии полупроводниковых приборов. Сущность изобретения: способ локальной плазмохимической обработки материала через маску включает размещение материала между двумя электродами рабочей поверхностью к первому из них, защиту части рабочей поверхности материала маской и возбуждение электрического разряда в газе между электродами подачей на них напряжения. Толщину используемой маски выбирают больше всех тех ее возможных при данном режиме возбуждения электрического разряда значений, при которых у той поверхности маски, которая обращена к первому электроду, происходит электрический разряд. Новым в способе является использование маски такой достаточно большой толщины, при которой электрический разряд у поверхности маски, обращенной к первому электроду, не загорается. Поэтому электрический разряд горит только в пространстве между открытыми участками материала и первым электродом, что повышает эффективность использования электроэнергии и плазмообразующего газа, а также увеличивает скорость травления. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к средствам общего назначения для обработки материалов с помощью электрической энергии и может быть использовано в технологии полупроводниковых приборов.

Известен способ локальной плазмохимической обработки материала - травление, предусматривающий размещение над материалом торцом к нему диэлектрического стержня и возбуждение электрического разряда в газе подачей напряжения на два электрода, между которыми находятся материал и стержень. При выполнении определенных условий на расположение и размеры стержня скорость травления под его торцом увеличивается в 2-10 раз по сравнению со скоростью травления остальной поверхности материала, что и обеспечивает локальность обработки [1].

Ограничения на размеры и форму торца стержня обуславливают ограниченность получаемых фигур травления - они представляют собой круги диаметром до нескольких миллиметров. Невозможность получения фигуры травления произвольной формы и размеров является существенным недостатком этого способа.

В ближайшем по технической сущности аналоге изобретения локальность плазмохимической обработки достигается наложением на рабочую поверхность материала тонкой металлической маски, защищающей часть этой поверхности от контакта с электрическим разрядом и тем самым от обработки - она идет только на незащищенных маской местах после размещения материала с маской между двумя электродами рабочей поверхностью к одному из них и возбуждения электрического разряда в плазмообразующем газе подачей на электроды напряжения [2].

Недостатком этого способа является низкая эффективность использования электроэнергии и плазмообразующего газа, поскольку электрический разряд в газе происходит не только у мест обработки материала, но и над поверхностью маски.

Техническим результатом от реализации изобретения является повышение эффективности использования электроэнергии и плазмообразующего газа. Этот результат достигается тем, что в способе локальной плазмохимической обработки материала через маску, включающем размещение материала между двумя электродами рабочей поверхностью к первому их них, защиту части рабочей поверхности материала маской и возбуждение электрического разряда в газе между электродами подачей на них напряжения, согласно изобретению, толщина используемой маски больше всех тех ее возможных при данном режиме возбуждения электрического разряда значений, при которых у той поверхности маски, которая обращена к первому электроду, загорается электрический разряд.

На фиг.1-2 схематически изображены варианты реализации предложенного способа. Здесь 1 и 2 - электроды, между которыми расположен обрабатываемый материал 3 рабочей поверхностью к первому электроду 1, 4 - маска. Чем больше толщина маски 4 при неизменном расстоянии между электродами 1 и 2, тем меньше расстояние между электродом 1 и обращенной к нему поверхностью маски 4, показанное на фиг.1. Когда это расстояние соизмеримо или меньше длины свободного пробега частиц используемого плазмообразующего газа, то в зазоре между маской 4 и электродом 1 электрический разряд возникнуть не может. Поэтому при таких расстояниях электрический разряд происходит только в пространстве между открытыми участками материала 3 и электродом 1, что и обеспечивает повышение эффективности использования электроэнергии и плазмообразующего газа.

На фиг.2 показан один из возможных вариантов реализации изобретения, предусматривающий выполнение маски и сегментов электрода 1 в виде единого блока, позволяющего упростить процедуру подготовки материала 3 к локальной обработке электрическим разрядом - достаточно подвести блок к обрабатываемой поверхности и подать напряжение на электроды. Продукты плазмохимических реакций могут отводиться через специальные отверстия 5 в блоке и/или через зазор между маской 4 и материалом 3, ширина которого L должна быть порядка или меньше длины свободного пробега частицы газа, чтобы предотвратить возникновение в зазоре электрического разряда.

Литература

1. RU 2091904 С1, Воронежский государственный университет, 27.09.1997.

2. Черный Б.И., Новоженюк Л.И. Свободные маски в технологии электронной техники. Зарубежная электронная техника, №2,1981 г., с.20 - прототип.

1. Способ локальной плазмохимической обработки материала через маску, включающий размещение материала между двумя электродами рабочей поверхностью к первому из них, защиту части рабочей поверхности материала маской и возбуждение электрического разряда в газе между электродами подачей на них напряжения, отличающийся тем, что толщина используемой маски больше всех тех ее возможных при данном режиме возбуждения электрического разряда значений, при которых у той поверхности маски, которая обращена к первому электроду, происходит электрический разряд.

2. Способ локальной плазмохимической обработки материала через маску по п.1, отличающийся тем, что первый электрод выполнен в виде отдельных сегментов, расположение которых обеспечивает возбуждение каждым из них электрического разряда у соответствующего ему участка материала.



 

Похожие патенты:

Изобретение относится к области полупроводниковой электроники, в частности к технологии полупроводниковых приборов. .
Изобретение относится к области вакуумно-плазменной обработки (очистки, осаждения, травления и т.д.) потоками ионов, атомов, молекул и радикалов инертных или химически активных газов слоев и пленочных материалов на ленточных носителях в микро- и наноэлектронике, оптике, гелиоэнергетике, стекольной, автомобильной и других отраслях промышленности.

Изобретение относится к микроэлектронике, в частности к реакторам для высокоплотной и высокочастотной плазменной обработки полупроводниковых структур. .
Изобретение относится к микроэлектронике и может быть использовано в технологии изготовления интегральных пьезоэлектрических устройств - фильтров, резонаторов, линий задержки на поверхностных акустических волнах.

Изобретение относится к технологии производства приборов микро- и наноэлектроники, связанной с травлением и выращиванием структур на поверхности материалов, в т.ч.

Изобретение относится к микроэлектронике, методам и технологическим приемам контроля и анализа структур интегральных схем, к процессам сухого плазменного травления.

Изобретение относится к устройствам генерации технологической плазмы и может быть использовано для проведения процессов осаждения, травления, окисления, имплантации (неглубоких слоев), сжигания органических масок на различных подложках в области электроники, наноэлектроники, при производстве медицинских инструментов, сенсорных устройств т.п.
Изобретение относится к технологии изготовления полупроводниковых приборов и ИС, в частности к способам травления пленочных диэлектриков, из которых наиболее широко используемым является нитрид кремния.

Изобретение относится к технологии полупроводникового производства, в частности к формированию затворов в КМОП технологии

Изобретение относится к устройствам локального травления тонких пленок микроэлектроники

Изобретение относится к технологии производства электронных компонентов для микро- и наносистемной техники

Изобретение относится к устройствам для генерирования плазмы высокой плотности и может быть использовано для травления изделий микроэлектроники. Устройство для плазмохимического травления содержит вакуумную камеру, генератор переменного напряжения высокой частоты и подложкодержатель с обрабатываемым изделием. Генератор соединен высокочастотным кабелем через согласующее устройство с генерирующей плазму спиральной антенной, размещенной в вакуумной камере. Подложкодержатель взаимодействует через дополнительное устройство с дополнительным генератором переменного напряжения высокой частоты. Согласующее устройство связано со спиральной антенной посредством полого вала, входящего в вакуумную камеру через вакуумный ввод вращения. На конце вала жестко закреплен полый рычаг. К полому рычагу прикреплен со смещением от оси вращения полого вала диэлектрический колпак с размещенной в нем спиральной антенной. Полый вал и подложкодержатель имеют автономные приводы вращения. Средство программного управления автоматически регулирует скорость вращения каждого привода, обеспечивая необходимую равномерность травления изделия. Изобретение обеспечивает уменьшение габаритов всей установки и снижение потребляемой мощности. 1 з.п. ф-лы, 4 ил.

Изобретение относится к микроэлектронике, методам и технологическим приемам контроля и анализа структуры интегральных схем, к процессам сухого плазменного травления. Сущность изобретения: слой TiN удаляется селективно к SiO2, вольфраму и поликремнию при реактивном ионном травлении его в плазме O2 с присутствующей в зоне разряда пластинкой фторопласта площадью 2-20% рабочей поверхности высокочастотного (ВЧ) электрода, травление проводят при плотности ВЧ мощности 1-3 Вт/см2, а рабочую поверхность ВЧ электрода покрывают кремнием, графитом или другим фторопоглощающим материалом. 1 табл.

Изобретение относится к СВЧ плазменным устройствам для проведения процессов осаждения и травления слоев - металлов, полупроводников, диэлектриков и может быть использовано в технологических процессах создания полупроводниковых приборов с высокой степенью интеграции, работающих в экстремальных условиях. Изобретение обеспечивает улучшение равномерности обработки и повышение скорости формирования слоев. В устройстве СВЧ плазменной обработки пластин, содержащем волноводный тракт, огибающий боковую стенку реакционной камеры, через центр широкой стенки волноводного тракта перпендикулярно к ней проходят несколько разрядных трубок, а в местах их входа и выхода из волноводного тракта накладывается магнитное поле для создания условий электронного циклотронного резонанса, волноводный тракт выполняют кольцевым и располагают на боковой стенке реакционной камеры так, что разрядные трубки размещаются в одной плоскости, параллельной обрабатываемой пластине, а над обрабатываемой пластиной вне реакционной камеры на ее крышке, выполненной из прозрачного для СВЧ материала, располагают плоскую двухзаходную спиральную СВЧ антенну, под обрабатываемой пластиной для ее нагрева размещают еще одну плоскую двухзаходную спиральную СВЧ антенну. 2 ил.

Изобретение относится к СВЧ плазменным установкам для проведения процессов травления и осаждения слоев - металлов, полупроводников, диэлектриков при пониженном давлении и может быть использовано в технологических процессах создания полупроводниковых приборов с высокой степенью интеграции. Изобретение обеспечивает улучшение равномерности обработки кремниевых пластин, упрощение настройки горения плазмы в каждой разрядной трубке. Устройство СВЧ плазменной обработки содержит волноводный тракт, огибающий боковую стенку реакционной камеры, через центр широкой стенки волноводного тракта перпендикулярно к камере проходят несколько разрядных трубок, а в местах их входа и выхода в волноводный тракт накладывается магнитное поле для создания условий электронного циклотронного резонанса. Для обеспечения одинаковых параметров плазмы волноводные тракты, выполненные кольцевыми, расположены на стенке реакционной камеры ярусами со смещением разрядных трубок в ярусах друг относительно друга, а также дополнительно введен электрод, через который вводятся газы. 2 ил.

Изобретение относится к области радиоэлектронной техники и микроэлектроники и может быть использовано для плазмохимической обработки подложек из поликора и ситалла. В способе плазмохимической обработки подложек из поликора и ситалла производят предварительную протирку изделий спиртом со всех сторон, включая протирку всех торцов подложки, производят предварительный обдув изделий нейтральным газом, помещают изделия в камеру плазменной установки вместе с подобным образцом - свидетелем, производят очистку изделий в среде доминирования кислорода при мощности 500-600 Вт, давлении процесса 800-900 мТорр в течение 10-20 минут, проверяют качество обработки поверхности по свидетелю методом краевого угла смачивания по окончании очистки. Изобретение обеспечивает повышение качества очистки подложек из поликора и ситалла перед напылением, в частности удаление оксидных пленок, органики, сокращение времени и экономических затрат на выполнение операций очистки. 4 з.п. ф-лы, 2 ил.

Изобретение относится к электронной технике СВЧ. Способ селективного реактивного ионного травления полупроводниковой гетероструктуры, имеющей, по меньшей мере, последовательность слоев GaAs/AlGaAs с заданными характеристиками, включает расположение полупроводниковой гетероструктуры на подложкодержателе в реакторе системы реактивного ионного травления с обеспечением контактирования слоя арсенида галлия с плазмой технологических газов, подачу в реактор технологических газов и последующее селективное реактивное ионное травление при заданных параметрах технологического режима. В способе используют полупроводниковую гетероструктуру, имеющую слой AlGaAs толщиной не менее 10 нм, с содержанием химических элементов AlxGa1-xAs при x, равном либо большем 0,22, в качестве технологических газов используют смесь трихлорида бора и гексафторида серы при соотношении (2:1)-(9:1) соответственно, селективное реактивное ионное травление осуществляют при давлении в реакторе 2-7 Па, мощности, подаваемой в разряд 15-50 Вт, температуре подложкодержателя 21-23°С, общем расходе технологических газов 15-25 мл/мин. Технический результат - повышение выхода годных путем повышения селективности, контролируемости, воспроизводимости, анизотропии и снижения неравномерности, плотности дефектов и загрязнений на поверхности полупроводниковой гетероструктуры. 1 з.п. ф-лы, 9 ил.

Изобретение относится к области измерений температуры тонких поверхностных слоев, в частности пористого диэлектрического слоя в химической промышленности (катализ), при изготовлении оптических и химических сенсоров, а так же в процессе криогенного травления диэлектриков в технологии микроэлектроники. Заявлен бесконтактный способ измерения температуры пористого слоя, характеризующийся тем, что температура пористого слоя определяется по калибровочным графикам зависимости показателя преломления пористого слоя от температуры при постоянном давлении паров выбранных химических соединений, адсорбирующихся в пористом слое, рассчитанным на основе экспериментальных графиков зависимости показателя преломления пористого слоя от относительного давления летучих паров в этом слое при комнатной температуре. Технический результат - повышение точности получаемых результатов. 2 з.п. ф-лы, 4 ил.
Наверх