Способ получения синтетического флюса для металлургических процессов выплавки чугуна и стали

Изобретение относится к черной металлургии, к производству флюсов для выплавки чугуна и стали. Фторуглеродсодержащие отходы электролитического производства алюминия с крупностью частиц не более 1 мм, кальцийсодержащий компонент и воду смешивают, окусковывают с получением материала крупностью 10-100 мм и сушат. В качестве кальцийсодержащего компонента используют материал, содержащий активный оксид кальция или образующий его при выплавке чугуна или стали. Весовое соотношение Ca:F в смеси поддерживают равным 0,8-1,3. При этом используют мелкодисперсные фторуглеродсодержащие отходы в виде пыли электрофильтров, или шлама газоочистки, или хвостов флотации угольной пены, или измельченной отработанной угольной футеровки, или в виде смеси отходов с содержанием фтора не менее 9 вес.%. В качестве кальцийсодержащего компонента на смешивание подают твердые отходы, образующиеся при производстве ацетилена из карбида кальция, или материал, содержащий карбонат кальция или содержащий гидроксид кальция с крупностью частиц не более 1 мм. Обеспечивается получение окускованного синтетического флюса оптимального компонентного состава с необходимой и достаточной крупностью и прочностью, повышается реакционная способность полученного флюса и эффективность его применения. 6 з.п. ф-лы, 4 табл., 5 пр.

 

Изобретение относится к черной металлургии, к производству флюсов для выплавки чугуна и стали.

Применение флюсов в металлургических переделах производства чугуна и стали необходимо для повышения качества продукции. Одним из направлений повышения технико-экономических показателей металлургических процессов является использование в составе флюсов техногенных отходов.

Известен комплексный синтетический легкоплавкий флюс для процессов черной металлургии, состоящий из 30-60% углерода, 5-30% оксида кальция, 25-65% фторидов натрия, алюминия, кальция и магния, 0,5-5% примесей, в т.ч. оксиды алюминия, железа, кремния, при следующем соотношении элементов в составе полезных компонентов флюса без примесей: натрий:алюминий:кальций:магний - (5-15):(1-4):(5-20):(0,1-1,0) (патент РФ №2321641, С21В 3/02, 2008 г., [1]). В составах флюса были использованы дробленая отработанная футеровка электролизеров и известь, а также шламы газоочистки электролизеров, дробленые огарки обожженных анодов и аспирационная пыль цеха обжига извести. Данный флюс повысил жидкотекучесть шлака, обеспечил высокую рафинирующую способность. Однако в случае загрузки флюса, содержащего крупнокусковые материалы, увеличивается время обработки расплава металла, достаточно сложно поддерживать соотношения элементов в составе полезных компонентов флюса. В случае использования в составе флюса мелкодисперсных материалов возрастают потери компонентов при загрузке и в процессе использования, снижается эффективность применения флюса.

Известен способ получения комплексных синтетических флюсов для металлургических процессов выплавки чугуна и стали, включающий смешивание фторуглеродсодержащих отходов электролитического производства алюминия, добавок и воды, в котором в качестве добавок используют известь, фторуглеродистые отходы электролитического производства алюминия дробят и/или сортируют, смешивают с водой и известью при следующем содержании компонентов, мас.%:

фторуглеродистые отходы электролитического
производства алюминия 50-90
известь 4-20
вода 6-30,

при этом в качестве фторуглеродсодержащих отходов электролитического производства алюминия может быть использована отработанная углеродистая футеровка электролизеров, пыли и шламы системы газоочистки электролизеров и аспирационных устройств, может быть использована известь в виде известьсодержащих отходов крупностью 0,01-0,20 мм с содержанием активного оксида кальция (СаОакт.) 60-96% (патент РФ №2354707, С21 В 3/02, 2009 г., [2]).

По назначению, технической сущности, наличию сходных признаков данное решение выбрано в качестве ближайшего аналога. Присадка флюса обеспечила формирование жидкотекучего шлакового расплава и получение высокоактивного шлака, обладающего высокой рафинирующей способностью. Однако для обеспечения высокой эффективности при использовании данного флюса необходимо дополнительно загружать известь как при загрузке сырья, так и в процессе продувки чугуна, что ведет к повышенному расходу реагентов за счет пыле- и газоуноса, к снижению технико-экономических показателей.

Задачами предлагаемого технического решения являются повышение технико-экономических показателей процессов выплавки чугуна и стали, улучшение качества выпускаемой продукции и снижение ее себестоимости.

Техническими результатами являются получение окускованного флюса оптимального компонентного состава с необходимой и достаточной крупностью и прочностью, повышение реакционной способности полученного флюса и эффективности его применения.

Технические результаты достигаются тем, что в способе получения синтетического флюса для металлургических процессов выплавки чугуна и стали, включающем смешивание фторуглеродсодержащих отходов электролитического производства алюминия, кальцийсодержащего компонента и воды, на смешение подают мелкодисперсные фторуглеродсодержащие отходы с крупностью частиц не более 1 мм, в качестве кальцийсодержащего компонента используют материал, содержащий активный оксид кальция или образующий его при выплавке чугуна или стали, поддерживают в смеси весовое соотношение Са:F равным 0,8÷1,3, а полученный материал смеси окусковывают, с получением материала крупностью 10÷100 мм, и сушат.

Кроме того, могут быть использованы мелкодисперсные фторуглеродсодержащие отходы с содержанием фтора не менее 9% вес. в виде пыли электрофильтров, или шлама газоочистки, или хвостов флотации угольной пены, или измельченной отработанной угольной футеровки, или в виде смеси отходов с различным соотношением компонентов, на смешение может подаваться кальцийсодержащий компонент крупностью не более 1 мм, а в качестве кальцийсодержащего компонента на смешение могут быть поданы твердые отходы, образующиеся при производстве ацетилена из карбида кальция, материал, содержащий карбонат кальция или гидроксид кальция.

Сравнительный анализ предлагаемого технического решения с решением, выбранным в качестве ближайшего аналога, показывает следующее.

Предлагаемое решение и решение по ближайшему аналогу характеризуются сходными признаками:

- получение синтетического флюса для металлургических процессов выплавки чугуна и стали;

- смешивание фторуглеродсодержащих отходов электролитического производства алюминия, кальцийсодержащего компонента и воды;

- использование реагентов крупностью не более 1 мм;

- использование кальцийсодержащего компонента, содержащего активный оксид кальция.

Предлагаемое техническое решение также характеризуется признаками, отличными от признаков, характеризующих решение по ближайшему аналогу:

- на смешение подают мелкодисперсные фторуглеродсодержащие отходы крупностью не более 1 мм;

- в качестве кальцийсодержащего компонента используют материал, содержащий активный оксид кальция или образующий его при выплавке чугуна или стали;

- поддерживают в смеси весовое соотношение Са:F равным 0,8÷1,3;

- полученный материал смеси окусковывают;

- полученный материал смеси окусковывают с получением материала крупностью 10÷100 мм;

- окускованный материал крупностью 10÷100 мм сушат.

Кроме того, могут быть использованы мелкодисперсные фторуглеродсодержащие отходы с содержанием фтора не менее 9% вес. в виде пыли электрофильтров, или шлама газоочистки, или хвостов флотации угольной пены, или измельченной отработанной угольной футеровки, или в виде смеси отходов с различным соотношением компонентов; на смешение может быть подан кальцийсодержащий компонент крупностью не более 1 мм, а в качестве кальцийсодержащего компонента на смешение могут быть поданы твердые отходы, образующиеся при производстве ацетилена из карбида кальция, материал, содержащий карбонат кальция или гидроксид кальция.

Наличие в предлагаемом решении признаков, отличных от признаков, характеризующих решение по ближайшему аналогу, позволяет сделать вывод о соответствии предлагаемого решения условию патентоспособности изобретения «новизна».

Техническая сущность предлагаемого решения заключается в следующем. Для достижения высоких технико-экономических показателей процессов выплавки чугуна и стали в предлагаемом техническом решении получают флюс, в котором при термической обработке синтезируется фторид кальция. Флюс также содержит энергетический компонент в виде углерода для интенсификации процесса флюсовой обработки. При этом исходным сырьем для получения флюса являются техногенные отходы - фторуглеродсодержащие отходы электролитического производства алюминия, а в ряде случаев твердые отходы, образующиеся при производстве ацетилена из карбида кальция, что снижает стоимость синтетического флюса. Кроме того, повышение потребительских и технологических свойств флюсового продукта достигается тем, что поддерживают необходимое и достаточное соотношение компонентов в смеси для обеспечения полноты взаимодействия между ними в процессе использования флюсового продукта, для получения активных реагентов, необходимых как для приготовления флюса (активный оксид кальция), так и при его использовании (активный фторид кальция). А для повышения реакционной способности компонентов, снижения потерь флюса при транспортировке, перегрузках и в процессе применения полученный после смешения материал окусковывают до крупности 10-100 мм и сушат до остаточной влажности 1-3%.

Использование фторуглеродсодержащих отходов крупностью не более 1 мм (и предпочтительно кальцийсодержащего компонента крупностью не более 1 мм) обусловлено необходимостью обеспечения хорошего контакта между реагентами, плотной упаковки реагентов в окускованном материале и обеспечением необходимой и достаточной прочности окускованного материала (в пределах 50÷100 кг/см2). Кроме того, снижаются потери фтора в газовую фазу за счет более полного реагирования фторалюминатов натрия (криолита, хиолита) с оксидом кальция с образованием термически устойчивого фторида кальция. При крупности фторуглеродсодержащих отходов более 1 мм снижается механическая прочность окускованного материала, увеличиваются его непроизводительные потери.

Поддержание в смеси соотношения Са:F равным 0,8÷1,3 обусловлено необходимостью максимального связывания фтора из криолита (Na3AlF6) и хиолита (Na5Al3F14) во фторид кальция (CaF2) по реакциям:

При весовом соотношении Са:F менее 0,8 часть фтора остается несвязанным в термически устойчивый фторид кальция, что приводит к необоснованным потерям фтора. При весовом соотношении Са:F более 1,3 - необоснованный перерасход кальцийсодержащего компонента.

Полученную смесь окусковывают с получением материала крупностью 10÷100 мм. При крупности окускованного материала менее 10 мм увеличивается пылевынос синтетического флюса при получении стали продувкой чугуна кислородом, что повышает расход флюса, а также ухудшается газопроницаемость шихты в доменном процессе. При крупности окускованного материала более 100 мм возрастает время реагирования материала с жидким металлом и шлаком.

При содержании фтора во фторуглеродсодержащих отходах менее 9,0% повышается расход синтетического флюса, снижается эффективность его использования.

Предлагаемые параметры получения окускованного синтетического флюса обеспечивают его высокое качество по содержанию рафинирующих и шлакообразующих компонентов, оптимальное содержание углерода для растворения флюса в шлаковом расплаве.

Предпочтительно применение в составе смеси в качестве кальцийсодержащего компонента материала, содержащего активный оксид кальция или образующий его при выплавке чугуна или стали. Это приводит к образованию активного фторида кальция, а следовательно, повышает реакционную способность полученного флюса и эффективность его применения.

Сравнительный анализ предлагаемого технического решения с другими известными решениями в данной области техники и в смежных областях выявил следующее.

1. Известно совместное применение пылевидных отходов производства алюминия и извести в составе шлакообразующих смесей:

- шлакообразующая смесь содержит, мас.%:

аморфный графит 10-20
известь 20-30
пылевидные отходы производства ферросилиция 30-40
пылевидные отходы производства алюминия 20-30

(патент РФ №1702696, С21С 5/54, 1996 г., [3]);

- шлакообразующая смесь содержит, мас.%:

пыль газоочисток производства алюминия 20,0-23,0
пыль газоочисток производства ферросилиция 28,0-32,0
пыль газоочисток производства извести 20,0-24,0
графит 3,0-8,0
феррохромовый самораспадающийся сепарированный шлак 18,0-24,0

(патент РФ №2025197, С21С 5/54, 1994 г., [4]);

- шлакообразующая смесь содержит, мас.%:

микрокремнезем 36-40
пылевидные отходы производства алюминия 19-23
пылевидные отходы производства извести 39-43

(патент РФ №2356687, B22D 11/111, С21С 5/54, 2009 г., [5]).

2. Известно использование кальцийсодержащих компонентов для извлечения фтора из фторсодержащих соединений и связывания его в термически устойчивый фторид кальция:

- в способе выделения безводного сульфата натрия из оборотных растворов газоочистки алюминиевых электролизеров, включающем абсорбцию фторсодержащих газов процессов электролиза алюминия содовым раствором, выделение из раствора газоочистки вторичного криолита и известковую каустификацию маточного раствора варки криолита, известь на каустификацию дозируют в количестве 100÷110% активной СаО от стехиометрически необходимого на реакцию с содой и фторидом натрия, смешанный осадок кальцита СаСО3 и флюорита CaF2 отделяют от раствора, а полученный сульфатно-каустический раствор упаривают до содержания каустической щелочи Na2Оку=150÷200 г/л с выделением безводного сульфата натрия (патент РФ №2316473, C01D 5/00, 2008 г., [6]);

- в способе получения фторида кальция преимущественно из растворов криолитового производства, включающем обработку фторсодержащих растворов гидроокисью кальция, обработку фторсодержащих растворов гидроокисью кальция ведут при массовом соотношении Са:F=(2-4):1 (а.с. СССР №1747385, C01F 11/22, 7/54, 1992 г., [7]);

- в способе удаления фтора из фторсодержащих растворов, включающем обработку раствора кальцийсодержащим реагентом, имеющим крупность частиц 5÷15 мкм, обработку проводят при соотношении реагентов, обеспечивающем массовое соотношение кальция и фтора, равном (1÷1,8):1, в качестве кальцийсодержащего реагента используют карбонат кальция, который предварительно нагревают до 100÷400°С путем импульсного истирания (патент РФ №2042626, C01F 11/22, С01 В 33/10, 1995 г., [8]).

В результате сравнительного анализа предлагаемого технического решения с другими известными решениями в данной области и в смежных областях не выявлено технических решений, характеризующихся аналогичной с предлагаемым решением совокупностью признаков, использование которой позволяет достигать аналогичные технические и технико-экономические результаты. Не выявлено технических решений, в которых на смешение подают мелкодисперсные фторуглеродсодержащие отходы крупностью не более 1 мм, в качестве кальцийсодержащего компонента используют материал, содержащий активный оксид кальция или образующий его при выплавке чугуна или стали, поддерживают в смеси соотношение Са:F равным 0,8-1,3, а полученный материал смеси окусковывают с получением материала крупностью 10-100 мм, который сушат.

На основании вышеизложенного сделан вывод о соответствии предлагаемого технического решения условию патентоспособности «изобретательский уровень».

Предлагаемый способ получения синтетического флюса для металлургических процессов выплавки чугуна и стали реализуется следующим образом.

Пример 1

Сравнение с ближайшим аналогом.

Изготовили две партии синтетического флюса по известной и предлагаемой технологиям. В качестве фторуглеродсодержащего материала в обоих случаях использовали мелкодисперсные отходы со шламового поля алюминиевого завода с содержанием фтора 13,6% и углерода 55,7%. В качестве кальцийсодержащего материала применяли:

- по известной технологии - известьсодержащие отходы обжига известняка с содержанием СаОакт.=~76,0%;

- по предлагаемой технологии - кальцийсодержащие отходы с содержанием СаО~75,7%, образующиеся при производстве ацетилена из карбида кальция по реакции:

СаС2+2H2O→С2Н2↑+Са(ОН)2

Соотношение фторуглеродсодержащих отходов, кальцийсодержащего материала и воды в смесях, приготовленных по известной и предлагаемой технологиям, составляло соответственно, % вес.: 70:17,6:12,4. При этом соотношение Са:F в смесях близко к ~1:1.

По предлагаемой технологии приготовленную смесь брикетировали на валковом прессе в брикеты чечевичной формы размером 60×40×40 мм и подсушили естественным образом до остаточной влажности 1-3%.

Смесь, полученную по известной технологии, высушили естественным образом до остаточной влажности 1-3%. При этом получили агломераты неправильной формы с размером от нескольких мм до 130 мм.

Партии синтетического флюса использовали при конвертерной выплавке стали. Испытания проводили в 350-тонных конвертерах с верхним кислородным дутьем. В пустой конвертер загружали металлолом, известь и синтетический флюс. Режим присадки извести на всех плавках был одинаковым: 30-50% от общего расхода давали на лом до заливки чугуна, остальное - в первой половине продувки.

Присадку в конвертер синтетического флюса осуществляли по графику: ~40% флюса давали в завалку, а остальное количество присаживали в ходе продувки. Во всех плавках количество загруженного в конвертер флюса было одинаковым и составляло ~2,12 т. Также во всех плавках выдерживали близкими количество металлолома, температуру, состав и количество жидкого чугуна, расход кислорода, продолжительность продувки кислородом.

Усредненные исходные данные и результаты опытов представлены в таблице 1.

Таблица 1
Показатели Известная технология Предлагаемая технология
Химический состав чугуна, %
кремний 0,62 0,61
марганец 0,45 0,46
фосфор 0,25 0,25
сера 0,028 0,027
Температура чугуна, °С 1395,0 1393,9
Расход материалов на плавку, т
чугун 245,5 246,0
скрап 103,1 102,9
известь 24,9 24,4
синтетический флюс 2,12 2,12
Длительность продувки, мин 18,7 18,5
Расход кислорода на продувку, м3 18024 18013
Температура металла после продувки, °С 1623,1 1630,5
Химический состав металла после 0,11 0,09
продувки, %: углерод
марганец 0,11 0,12
фосфор 0,021 0,019
сера 0,022 0,020
Степень дефосфорации, % 91,6 93,6
Степень десульфурации, % 20,2 25,3
Химический состав шлака, %:
СаО 50,55 51,13
SiO2 17,74 18,13
FeOобщ. 20,7 18,6
CaO/SiO2 2,85 2,82

Сравнение с ближайшим аналогом показало, что предлагаемое техническое решение обеспечивает более высокие показатели по степени дефосфорации (93,6% против 91,6%), десульфурации (25,3% против 20,2%), остаточному содержанию FeOобщ. в шлаке (18,6% против 20,7%) и температуре металла после продувки (1630,5 против 1623,1°С).

Пример 2.

Обоснование крупности частиц фторуглеродсодержащих отходов.

Приготовили 3 партии брикетов смешиванием влажных фторуглеродсодержащих отходов (пыли электрофильтров, шлама газоочистки, измельченной отработанной угольной футеровки) с содержанием фтора 16% вес. и кальцийсодержащего компонента на основе продукта разложения карбида кальция водой с последующим прессованием в цилиндрические образцы диаметром ~60 мм и высотой ~60 мм. Содержание фторуглеродсодержащих отходов и кальцийсодержащего компонента в брикетах составило соответственно 75% и 25% вес. Партии брикетов отличались гранулометрическим составом фторуглеродсодержащих отходов и кальцийсодержащего компонента.

Высушенные брикеты испытывали на:

- предел прочности при сжатии;

- потери фтора в газовую фазу в результате обжига брикетов при 1100°С в течение 1 ч.

Исходные данные и результаты опытов представлены в таблице 2.

Таблица 2
Крупность частиц, мм Весовое соотн. Ca:F в брикетах Предел прочности при сжатии, кг/см2 Потери фтора, % вес. (абс.)
Фторуглеродсо-держ. отходы Кальцийсо-держ. комп.
1 100% менее 1,0 СаО менее 2,0 1,0 55,4 0,39
2 100% менее 1,0 СаО менее 1,0 1,0 63,3 0,35
3 100% менее 2,0 СаО менее 1,0 1,0 47,2 0,52

Из приведенных в таблице 2 результатов следует, что с повышением крупности частиц фторуглеродсодержащих отходов снижается механическая прочность брикетов и увеличиваются потери фтора в газовую фазу. Это приводит к увеличению удельного (на 1 т металла) расхода синтетического флюса. Причем предпочтительным является использование кальцийсодержащего компонента с крупностью частиц менее 1,0 мм.

Пример 3.

Обоснование оптимального весового соотношения Са:F в смеси.

Приготовили 5 партий брикетов смешиванием влажных фторуглеродсодержащих отходов (пыли электрофильтров, шлама газоочистки, измельченной отработанной угольной футеровки) с содержанием фтора 15% вес. и кальцийсодержащего компонента на основе извести-пыловки с последующим прессованием в цилиндрические образцы диаметром ~60 мм и высотой ~60 мм. Партии брикетов отличались весовым соотношением Са:F в смеси.

Высушенные брикеты обжигали на воздухе при 1100°С в течение 1 ч. Охлажденные брикеты взвешивали и анализировали на содержание фтора. По результатам анализа определяли потери фтора в газовую фазу.

Исходные данные и результаты опытов представлены в таблице 3.

Таблица 3
Крупность частиц, мм Весовое соотн. Ca:F в брикетах Потери фтора, % вес.(абс.)
Фторуглеродсо-держ. отходы Кальцийсодерж. компонент
1 100% менее 1,0 СаО менее 1,0 0,7 0,77
2 0,8 0,55
3 1,0 0,41
4 1,3 0,39
5 1,4 0,38

Из приведенных в таблице 3 результатов следует, что оптимальное весовое соотношение Ca:F в смеси находится в пределах 0,8-1,3. При весовом соотношении Са:F в смеси меньше 0,8 абсолютные потери фтора возрастают в 1,4-1,9 раза. При увеличении весового соотношения Са:F в смеси более 1,3 наблюдается непроизводительный расход кальцийсодержащего реагента.

Пример 4.

Обоснование оптимальных размеров окускованного синтетического флюса.

В барабанном грануляторе изготовили промышленную партию окатышей синтетического флюса из мелкодисперсных фторуглеродсодержащих отходов алюминиевого производства (пыли электрофильтров, шлама газоочистки, хвостов флотации угольной пены, измельченной отработанной угольной футеровки) с содержанием фтора 13% вес. и кальцийсодержащего компонента на основе смеси, состоящей из продукта разложения карбида кальция водой с известняком. Полученные окатыши высушили и рассеяли на 5 фракций:

-10 мм;

+10 мм - 25 мм;

+25 мм - 50 мм;

+50 мм - 100 мм;

+100 мм - 120 мм.

Из полученных фракций сформировали 3 партии окатышей синтетического флюса: партия 1: - 10% фракций (- 10 мм) и 90% фракций (+10 мм - 100 мм);

партия 2 - 100% фракций (+10 мм - 100 мм);

партия 3 - 90% фракций (+10 мм - 100 мм) и 10% фракций (+100 мм - 120 мм).

Партии окатышей использовали при конвертерной выплавке стали в качестве разжижителя металлургического шлака. Испытания проводили в 350-тонных конвертерах с верхним кислородным дутьем. В пустой конвертер загружали металлолом, известь и синтетический флюс. Режим присадки извести на всех плавках был одинаковым: 30-50% от общего расхода давали на лом до заливки чугуна, а остальное - в первой половине продувки.

Присадку в конвертер фракционированных партий синтетического флюса в виде окатышей во время опытных плавок осуществляли по идентичному графику: 40% флюса давали в завалку, а остальное количество присаживали в ходе продувки. Во всех плавках количество загруженного в конвертер флюса было одинаковым и составляло ~2,07-2,08 т. Также во всех плавках выдерживались одинаковым: количество скрапа, температура, состав и количество жидкого чугуна, расход кислорода, продолжительность продувки.

Усредненные исходные данные и результаты опытов представлены в таблице 4.

Таблица 4
Показатели Партия 1 Партия 2 Партия 3
Химический состав чугуна, %
кремний 0,59 0,60 0,59
марганец 0,56 0,53 0,54
фосфор 0,27 0,28 0,26
сера 0,0205 0,0210 0,0207
Температура чугуна, °С 1376,3 1365,9 1380,0
Расход материалов на плавку, т
чугун 246,1 250,0 247,7
скрап 105,8 102,9 103,0
известь 23,7 24,1 23,5
синтетический флюс 2,07 2,07 2,08
Длительность продувки, мин 19,18 19,75 19,83
Расход кислорода на продувку, м3 18113 18164 18157
Температура металла после продувки, °С 1620,1 1623,3 1623,0
Химический состав металла после продувки, %: углерод 0,098 0,100 0,111
марганец 0,13 0,12 0,13
фосфор 0,0296 0,0218 0,0238
сера 0,0175 0,0160 0,0160
Степень дефосфорации, % 89,04 92,2 90,45
Степень десульфурации, % 14,75 23,84 22,55
Химический состав шлака, %:
СаО 48,05 48,13 48,3
SiO2 15,74 16,13 15,9
FeOобщ. 21,8 19,1 20,6
CaO/SiO2 3,05 2,98 3,04

При идентичных условиях проведения промышленных плавок с использованием синтетического флюса разного гранулометрического состава получены следующие результаты:

1. Лучшие показатели по степени дефосфорации (92,2%), десульфурации (23,84%), остаточному содержанию FeOобщ. в шлаке (19,1%) и температуре металла после продувки (1623,3°С) получены при использовании флюса из партии 2, 100% гранул которого имеют размер от 10 до 100 мм.

2. При использовании партии 1 с содержанием мелкой фракции флюса (-10 мм) снижение технико-экономических показателей произошло в результате пылевыноса мелких гранул флюса струей кислорода при продувке.

3. При использовании партии 3 с содержанием крупной фракции флюса (-100+120 мм) снижение технико-экономических показателей произошло в результате неполного взаимодействия крупных брикетов флюса с расплавом шлака и металла.

Пример 5.

Испытания синтетического флюса в доменном процессе.

Изготовили партию синтетического флюса по предлагаемой технологии. В качестве фторуглеродсодержащего материала использовали мелкодисперсные отходы со шламового поля алюминиевого завода с содержанием фтора 14,2% и углерода 53,6%. В качестве кальцийсодержащего материала применяли кальцийсодержащие отходы с содержанием СаО ~75,7%, образующиеся при производстве ацетилена из карбида кальция. Соотношение Са:F в смесях составляло ~1:1.

Приготовленную смесь брикетировали на валковом прессе в брикеты чечевичной формы размером 60×40×40 мм и подсушили естественным образом до остаточной влажности 1-3%.

Полученные брикеты синтетического флюса вводили в состав шихты доменной печи. Расход флюса составил 5,5 кг/т жидкого чугуна. В результате плавки получены: чугун состава, % вес.: Si=0,61; Mn=0,45; P=0,23; S=0,019; и шлак состава, % вес.: SiO2=29,85%; CaO=40,11; Al2O3=17,23; MgO=9,95; FeO=0,23; S=0,45. Основность шлака CaO:SiO2=1,34.

Использование синтетического флюса улучшило жидкотекучесть доменного шлака, его десульфуризующую способность и хорошую дренажную способность горна.

Таким образом, предлагаемый способ получения синтетического флюса для металлургических процессов выплавки стали и чугуна позволяет получить окускованные синтетические флюсы, обладающие высокой рафинирующей и шлакообразующей способностью, обеспечивающие оптимальный температурный режим шлакообразования с повышенными технико-экономическими показателями.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Патент РФ №2321641, С21В 3/02, 2008 г.

2. Патент РФ №2354707, С21В 3/02, 2009 г.

3. Патент РФ №1702696, С21С 5/54, 1996 г.

4. Патент РФ №2025197, С21С 5/54, 1994 г.

5. Патент РФ №2356687, B22D 11/111, С21С 5/54, 2009 г.

6. Патент РФ №2316473, C01D 5/00, 2008 г.

7. А.С. СССР №1747385, C01F 11/22, 7/54, 1992 г.

8. Патент РФ №2042626, C01F 11/22, С01 В 33/10, 1995 г.

1. Способ получения синтетического флюса для металлургических процессов выплавки чугуна и стали, включающий смешивание фторуглеродсодержащих отходов электролитического производства алюминия, кальцийсодержащего компонента и воды, отличающийся тем, что на смешивание подают мелкодисперсные фторуглеродсодержащие отходы с крупностью частиц не более 1 мм, в качестве кальцийсодержащего компонента используют материал, содержащий активный оксид кальция или образующий его при выплавке чугуна или стали, поддерживают в смеси весовое соотношение Ca:F равным 0,8-1,3, а полученный материал смеси окусковывают с получением материала крупностью 10-100 мм и сушат.

2. Способ по п.1, отличающийся тем, что используют мелкодисперсные фторуглеродсодержащие отходы с содержанием фтора не менее 9 вес.%.

3. Способ по п.1, отличающийся тем, что используют мелкодисперсные фторуглеродсодержащие отходы в виде пыли электрофильтров, или шлама газоочистки, или хвостов флотации угольной пены, или измельченной отработанной угольной футеровки, или в виде смеси отходов с различным соотношением компонентов.

4. Способ по п.1, отличающийся тем, что на смешивание подают кальцийсодержащий компонент с крупностью частиц не более 1 мм.

5. Способ по п.1, отличающийся тем, что в качестве кальцийсодержащего компонента на смешивание подают твердые отходы, образующиеся при производстве ацетилена из карбида кальция.

6. Способ по п.1, отличающийся тем, что в качестве кальцийсодержащего компонента на смешивание подают материал, содержащий карбонат кальция.

7. Способ по п.1, отличающийся тем, что в качестве кальцийсодержащего компонента на смешивание подают материал, содержащий гидроксид кальция.



 

Похожие патенты:
Изобретение относится к металлургии, в частности к способам рафинирования ферросплавов в ковше. .

Изобретение относится к металлургии, в частности к процессам обработки жидкого металла. .

Изобретение относится к черной металлургии, в частности к обработке стали в сталеразливочном ковше. .

Изобретение относится к черной металлургии, в частности к способам выплавки стали. .

Изобретение относится к составу и способу получения кондиционирующей добавки для шлака при получении стали, в частности нержавеющей, в электрической печи. .
Изобретение относится к черной металлургии, в частности к способам выплавки рельсовой стали в электропечах. .
Изобретение относится к черной металлургии, в частности к способам выплавки рельсовой стали в электропечах. .
Изобретение относится к области черной металлургии, в частности к способам получения стали в дуговой электросталеплавильной печи. .

Изобретение относится к черной металлургии, в частности к выплавке стали в конвертере. .

Изобретение относится к черной металлургии, в частности к способу выплавки стали в конвертере. .
Изобретение относится к черной металлургии, в частности к процессам производства низкоуглеродистой стали, содержащей после ее обработки углерод в пределах 0,01÷0,09 мас.% и кремний в пределах 0,01÷0,04 мас.%.
Изобретение относится к черной металлургии, в частности к способу производства низкокремнистой стали. .

Изобретение относится к области металлургии и может быть использовано при внепечной обработке жидкой стали в ковше. .

Изобретение относится к области металлургии, а именно к устройствам для ввода в жидкий металл алюминиевой и порошковой проволоки. .
Изобретение относится к черной металлургии, в частности к способам внепечной обработки стали. .

Изобретение относится к металлургии, в частности к внепечной обработке стали в ковше. .
Изобретение относится к черной металлургии и может быть использовано при выплавке и внепечной обработке высокоуглеродистой стали с последующей бесстопорной разливкой в заготовку малого сечения на сортовой МНЛЗ.
Изобретение относится к черной металлургии и может быть использовано в сталеплавильном производстве для раскисления, модифицирования и рафинирования сталей, сплавов и чугунов.

Изобретение относится к области металлургии и может быть использовано для получения вспененного шлака в электродуговых печах. .
Изобретение относится к металлургии, в частности к способам рафинирования ферросплавов в ковше. .

Изобретение относится к черной металлургии, а именно к средствам внепечной обработки расплава стали гранулообразными агентами для его кальцинации
Наверх